Safety Precautions

Before using the robot, always carefully read the precautions below and the separate "Safety Manual" and take all necessary safety measures.

A. These show precautions based on Labor Health and Safety Regulations (Articles 36, 104, 150, 151).

⚠️ Caution
For the sake of safety, teaching work should only be performed by workers who have received special education.
(The same is true for any maintenance work done with the power source not cut off.)
→ Implementation of safety education

⚠️ Caution
For teaching work, prepare work regulations concerning robot operation methods and procedures, measures for when there is an abnormality and when restarting, etc. Perform teaching work according to these regulations.
(The same is true for any maintenance work done with the power source not cut off.)
→ Prepare work regulations

⚠️ Warning
For teaching work, set up a device that can stop operation immediately.
(The same is true for any maintenance work done with the power source not cut off.)
→ Emergency stop switch setting

⚠️ Caution
During teaching work, label the start switch etc. to indicate that teaching work is underway.
(The same is true for any maintenance work done with the power source not cut off.)
→ Display that teaching work is underway

⚠️ Danger
During operation, set up a fence or barrier to prevent contact between workers and the robot.
→ Setting up a safety fence

⚠️ Caution
Determine a uniform signal to relevant staff for the start of operation and use that signal.
→ Signal for the start of operation

⚠️ Caution
For maintenance work, in principle, cut off the power and label the start switch etc. to indicate that maintenance work is underway.
→ Display that maintenance work is underway

⚠️ Caution
Before starting work, check the robot, emergency stop switches, related devices, etc. and make sure there are no abnormalities.
→ Check before the start of work
B. This shows precaution points given in the separate "Safety Manual". For details, please read the text of the "Safety Manual".

⚠️ **Caution**
Use the robot in an environment that is within the range of its specifications. Failure to do this can cause a drop in reliability and breakdown. (Temperature, humidity, atmosphere, noise, etc.)

⚠️ **Caution**
When transporting the robot, put it into its specified transport posture. Failure to do this can cause a drop in reliability and breakdown.

⚠️ **Caution**
Install the robot on a solid platform. If the robot is in an unstable posture, this can cause positional deviation and vibration.

⚠️ **Caution**
As much as possible, wire cables away from noise sources. If cables are brought too close to noise sources, this can cause positional deviation and malfunction.

⚠️ **Caution**
Do not apply excess force to a connector or bend a cable excessively. Doing so can cause a contact defect or cut line.

⚠️ **Caution**
Set work masses, including hands, so that they do not exceed rated load or permitted torque. Exceeding either of these can cause an alarm or breakdown.

⚠️ **Caution**
Install hands and tools and hold work securely. Failure to do this can cause objects to fly loose during operation and cause personnel injury or damage.

⚠️ **Caution**
Ground the robot and controller reliably. Failure to do this can cause malfunction due to noise or in an extreme case, electrical shock.

⚠️ **Caution**
Display the operating state while the robot is operating. Lack of such a display can result in someone coming too close to the robot by mistake or mistaken operation.

⚠️ **Warning**
Always secure the priority right for control of the robot before doing any teaching work within the robot's operating range. Failure to do this can allow the robot to start upon instruction from the outside and cause personnel injury or damage.

⚠️ **Caution**
Make the jog speed as slow as possible and do not take your eyes off the robot. Failure to do this may cause a collision between a work piece and peripheral devices.

⚠️ **Caution**
After completing program editing but before starting automatic operation, always check operations with step operation. Failure to do this may cause a collision with a peripheral device due to a programming mistake or the like.

⚠️ **Caution**
Set up the safety fence in such a way that, while the equipment is running on automatic, either the safety fence door is locked or if anyone tries to open the door, the robot is stopped. Failure to take these protective measures can cause an accident resulting in injury.
Never on your own judgment make an alterations or use maintenance parts other than those designated. Doing so can cause breakdown and problems.

When moving the robot arm from the outside, never stick a hand or finger into an opening. Depending on the posture, the hand or finger could get caught in the equipment.

Do not switch the robot Off or make an emergency stop of the robot by switching Off the robot controller's main power supply. If the robot controller's main power supply is switched Off during automatic operation, this can reduce the robot's precision. It could also cause the arm to fall or allow inertia to result in collisions with peripheral device or the like.

When rewriting a program, parameters, or other internal information within the robot's controller, do not switch Off the robot controller's main power supply. If the robot controller's main power supply is switched Off during automatic operation or while a program or parameter is being rewritten, there is a danger of the internal information in the robot controller being destroyed.

For using RH-5AH/10AH/15AH series or RH-6SH/12SH/18SH series. While pressing the brake releasing switch on the robot arm, beware of the arm which may drop with its own weight. Dropping of the hand could lead to a collision with the peripheral equipment or catch the hands or fingers.
<table>
<thead>
<tr>
<th>Printing Date</th>
<th>Manual No.</th>
<th>Revision Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008/04</td>
<td>BFP-A8618-*</td>
<td>First edition (Corresponds to the Ver.1.1)</td>
</tr>
<tr>
<td>Version</td>
<td>Release Date</td>
<td>Revision Contents</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1.0</td>
<td>2008/01</td>
<td>Initial release (Japanese version only)</td>
</tr>
<tr>
<td>1.1</td>
<td>2008/04</td>
<td>CRnQ Communications Added the GOT transparent function. Parameter editing Added the Multiple CPU setting screen.</td>
</tr>
</tbody>
</table>
Thank you for purchasing this MELFA Mitsubishi Electric industrial robot. This document is the user's manual for the MELSOFT "RT ToolBox2" and "RT ToolBox2 mini". This document will help you to use the functions of this software to the maximum over a wide range of stages, from initial robot start to program writing, editing, and management. In order to operate the robot safely, carefully read this document and the safety manual that comes with the robot main unit before operating the robot. Also, store this manual carefully so that you can take it out and read it whenever needed.

Target versions for this document

This document is for the MELSOFT “RT ToolBox2” and "RT ToolBox2 mini" Ver. 1.1 and supports the following robot controllers.
- CRn-500 series controllers
- CRnQ-700 series controllers
- CRnD-700 series controllers
 In some locations, this document writes about the "CRn-700 series".

Target readers for this document

This document assumes that the reader understands basic Microsoft Windows operation methods and the robot controller.
Those who have not mastered basic computer operation methods should read the user's manual for their computer.

Notation method in this document

⚠️ **Danger**
This indicates an item for which incorrect handling could present imminent danger of death or injury.

⚠️ **Warning**
This indicates an item for which incorrect handling could present a danger of death or injury.

⚠️ **Caution**
This indicates an item for which incorrect handling could present a danger of impairment. It could also present a danger of just physical damage.

This document uses the following general terms and abbreviations

<table>
<thead>
<tr>
<th>General Term/Abbreviation</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT ToolBox2</td>
<td>General name for the RT ToolBox2 and RT ToolBox2 mini To distinguish them in explanations, these two are called the "standard edition" and "mini edition".</td>
</tr>
<tr>
<td>Universal model QCPU</td>
<td>General term for Mitsubishi PLC CPU modules of Q02UCPU, Q03UDCPU, Q04UDHCPU and Q06UDHCPU.</td>
</tr>
<tr>
<td>GX Developer</td>
<td>Abbreviation of SW D5C-GPPW-E(-EV) / SW D5F-GPPW-E type of Mitsubishi PLC programming software package.</td>
</tr>
</tbody>
</table>

The Microsoft® Windows® operating system is a registered trademark of the Microsoft Corp. of the United States in the United States and other countries.
Adobe® and Acrobat® are registered trademarks of Adobe Systems Incorporated.
The system names, product names, etc. in this manual are generally trademarks and registered trademarks of their respective companies. In the main text, the ©, ®, and ™ marks are omitted.

Transfer of all or part of the contents of this document without permission is prohibited. The contents of this document are subject to change without notice. Every effort has been made to ensure the accuracy of the contents of this document, but if you should notice any unclear point, mistake, or omission, please notify Mitsubishi Electric.

Copyright(C)2008 MITSUBISHI ELECTRIC CORPORATION
Contents

1. Usage .. 1-15
 1.1. How to Use this Document.. 1-15
 1.2. Checking the Product.. 1-15
 1.2.1. Checking the package.. 1-15
 1.2.2. Checking the CD-ROM contents ... 1-15
 1.2.3. About the "MelfaRXM.ocx" communications middleware.......................... 1-15
 1.3. Items to be prepared by the customer ... 1-16
 1.3.1. Computer system .. 1-16
 1.3.2. Computer cable ... 1-16
 1.4. Operating Environment .. 1-17
 1.4.1. Connectable robot controllers ... 1-17
 1.4.2. Computer system .. 1-18
 1.5. Installation, Uninstallation .. 1-19
 1.5.1. Installation .. 1-19
 1.5.2. Uninstall... 1-22
 1.5.3. USB driver (CRnD-700 series robot controller) installation........................... 1-23
 1.5.4. CRnQ communications USB driver installation ... 1-25
 1.5.5. CRnQ Communications USB driver for GOT transparent installation 1-30
 1.6. When Starting at the Same Time as Another Product ... 1-32

2. RT ToolBox2 Usage .. 2-33
 2.1. Starting RT ToolBox2.. 2-33
 2.2. Explanation of RT ToolBox2 Screens.. 2-34
 2.3. Communications Server 2.. 2-38
 2.4. Closing RT ToolBox2... 2-39

3. Basic Functions .. 3-40

4. Workspaces and Projects ... 4-41
 4.1. Workspaces and Projects ... 4-41
 4.2. Creating a New Workspace .. 4-43
 4.3. Opening an Existing Workspace ... 4-44
 4.4. Closing a Workspace ... 4-44
 4.5. Deleting a Workspace ... 4-45
 4.6. Saving a Workspace ... 4-45
 4.7. Changing a Workspace Name .. 4-46
 4.8. Changing a Workspace Title .. 4-46
 4.9. Adding a Project ... 4-47
 4.10. Changing a Project Name .. 4-48
 4.11. Deleting a Project.. 4-48
 4.12. Contents of Project Tree .. 4-49
 4.13. Copying Programs Between Projects ... 4-49
 4.14. Offline/Online/Simulation ... 4-50

5. Connecting with the Robot .. 5-52
 5.1. Robots Connected and Types of Communication .. 5-52
 5.2. Connection Settings... 5-53
 5.2.1. USB Communication Settings ... 5-54
 5.2.2. TCP/IP (Ethernet) Communication Settings .. 5-54
 5.2.3. RS-232 Communication Settings ... 5-55
 5.2.4. CRnQ Communications Settings ... 5-56
6. **Robot Program Language Setting**

7. **Writing Programs**

7.1. Writing a New Program ... 7-64
7.1.1. Writing a new program on the computer... 7-64
7.1.2. Writing a new program in the robot controller 7-65
7.2. Opening an Existing Program .. 7-66
7.2.1. Opening an existing program on the computer 7-66
7.2.2. Opening a program in a robot controller ... 7-66
7.2.3. Read items when opening program in robot controller 7-67
7.3. Explanation of Program Edit screen .. 7-68
7.4. Program Editing Menu Bar .. 7-69
7.5. Customizing the Program Edit Screen .. 7-71
7.5.1. Changing the display area ... 7-71
7.5.2. Command format hints .. 7-72
7.5.3. Character colors ... 7-72
7.5.4. Changing the font ... 7-73
7.6. Program Editing ... 7-74
7.6.1. MELFA-BASIC V command statement editing 7-74
7.6.2. MELFA-BASIC IV and Movemaster command command statement editing 7-75
7.6.3. Position variable editing .. 7-76
7.6.4. Edit assist functions .. 7-78
7.7. Saving Programs .. 7-85
7.7.1. Save ... 7-85
7.7.2. Save on computer ... 7-86
7.7.3. Saving in robot controller .. 7-87
7.7.4. Items written when saving in robot .. 7-88
7.7.5. Setting the syntax check for before program saving....................... 7-89
7.8. Program Printing .. 7-90
7.8.1. Checking a print image ... 7-90
7.8.2. Printing a program ... 7-90
7.8.3. Setting to print a program .. 7-90
7.9. Program Debugging .. 7-91
7.9.1. Starting debugging .. 7-91
7.9.2. Executing programs step by step .. 7-92
7.9.3. Revising programs ... 7-93
7.9.4. Setting and deleting breakpoints ... 7-94
7.9.5. Ending debugging .. 7-95
7.10. Program Management ... 7-96
7.10.1. Program list display ... 7-97
7.10.2. Copy ... 7-97
7.10.3. Move .. 7-98
7.10.4. Delete .. 7-98
7.10.5. Rename .. 7-98
7.10.6. Protect settings .. 7-99
7.10.7. Comparison .. 7-99
7.11. Program Conversion ... 7-100
7.11.1. Starting program conversion ... 7-100
7.11.2. Line number conversion (from MELFA-BASIC IV to MELFA-BASIC V) 7-101
7.11.3. Position data conversion (from E/EN/M1/M2 series to CRn-500/700 series) 7-103

8. **Setting Parameters**

8.1. Editing from parameter list ... 8-105
8.1.1. Starting .. 8-105
8.1.2. Parameter editing ... 8-107
8.1.3. Parameter list reading .. 8-108
8.1.4. Finding parameters ... 8-108
8.2. Robot Controller Operation Modes for Parameter Writing 8-109
8.3. Operating Range Parameters ... 8-110
8.4. Jog Parameters ... 8-110
8.5. Hand Parameters .. 8-111
8.6. Weight and Size Parameters ... 8-112
8.7. Tool Parameters ... 8-113
8.8. Slot Tables ... 8-114
8.9. Output Signal Reset Pattern Parameters .. 8-115
8.10. Assigning Dedicated Input/Output Signals ... 8-116
 8.10.1. General 1 Parameters .. 8-116
 8.10.2. General 2 parameters ... 8-116
 8.10.3. Data parameters ... 8-117
 8.10.4. Jog parameters .. 8-117
 8.10.5. Hand parameters ... 8-118
 8.10.6. Warm-up operation parameters .. 8-118
 8.10.7. Slot start (each slots) parameters ... 8-119
 8.10.8. Slot stop (each slots) parameters ... 8-119
 8.10.9. Servo On/Off (each robot) parameter ... 8-120
 8.10.10. Machine lock (each robot) parameters ... 8-120
8.11. RS-232 Setup Parameters ... 8-121
8.12. Zone Parameters ... 8-121
8.13. Free Plane Limit Parameters .. 8-122
8.14. Escape Point Parameters .. 8-122
8.15. Robot Program Language Parameters ... 8-123
8.16. Additional Axis Parameters .. 8-124
8.17. Collision Detection Parameters .. 8-125
8.18. Warm-Up Operation Parameters .. 8-126
8.19. Movement Parameters ... 8-127
8.20. Program Parameters .. 8-128
8.21. User Error Parameters ... 8-129
8.22. Ethernet Settings ... 8-130
8.23. Multiple CPU Settings .. 8-131
8.24. Parameter printing ... 8-132

9. Status Monitoring.. 9-133
 9.1. Robot Operation Monitoring .. 9-134
 9.1.1. Slot operation status monitoring ... 9-134
 9.1.2. Program monitoring .. 9-135
 9.1.3. Movement status ... 9-138
 9.1.4. Errors ... 9-139
 9.1.5. Robot status ... 9-141
 9.2. Signal Monitoring .. 9-142
 9.2.1. General signal .. 9-142
 9.2.2. Named signals .. 9-145
 9.2.3. Stop signal ... 9-147
 9.2.4. Register (CC-Link) monitoring .. 9-148
 9.3. Production Condition Monitoring .. 9-151
 9.3.1. Operation hours ... 9-151
 9.3.2. Production information .. 9-151

10. Maintenance .. 10-152
 10.1. Setting Origin Data .. 10-152
 10.1.1. Origin data input technique .. 10-154
 10.1.2. Mechanical stopper technique ... 10-155
 10.1.3. Tool technique .. 10-155
 10.1.4. ABS origin technique ... 10-156
 10.1.5. User Origin Technique .. 10-156
 10.1.6. Origin Parameter Backup .. 10-157
 10.2. Initialization ... 10-158
 10.2.1. Starting ... 10-158
 10.2.2. Setting the time in the robot controller ... 10-158
 10.2.3. Deletion of all robot programs .. 10-159
 10.2.4. Initializing the battery remaining time ... 10-159
 10.2.5. Serial number ... 10-159
 10.3. Maintenance Forecasting ... 10-160
 10.3.1. Specifications ... 10-160
 10.3.2. Starting ... 10-160
11. Option Card

12. Backup and Restore

13. Simulation

14. MelfaRXM.ocx Communications Middleware Setup

15. Appendix
1. Usage

This explains precautions you need to know before using this software.

1.1. How to Use this Document

The manual is in the CR-ROM as the Adobe PDF file.
D:/Doc/BFP-A8618.pdf (Example for the CD-ROM drive is “D:".)

For reading the manual, Adobe Acrobat Reader Ver.5.0 or more is required.
If Adobe Acrobat Reader isn’t installed, please download from following Adobe Systems Incorporated URL (As of December, 2007)
URL: http://www.adobe.com/

1.2. Checking the Product

1.2.1. Checking the package

Please check if all items shown below are included in the package.
- CD-ROM "RT ToolBox2"
- Setup Guide
- END-USER SOFTWARE LICENSE AGREEMENT
- License Certification
 (Please make sure Product ID is printed on it.)
* Please contact the branch office or the agency if there is some shortage in the package.

1.2.2. Checking the CD-ROM contents

The CD-Rom has the following configuration.

```
I:
  setup.exe         The files for installagion of this software
                   :
  Doc   ......... This manual (pdf)
  Misc   ......... User Registation Application Form (fax, postcard) is stored
  Utility ......... The folder for setup of the communication middleware "MelfaRXM.ocx"
```

1.2.3. About the "MelfaRXM.ocx" communications middleware

MelfaRXM.ocx is the ActiveX control that communicates to robot-controller. You can create the Windows Application of "MELFA ROBOT" by using this control.
You can use "MelfaRXM.ocx" in only standard version of this software.
For information on how to set up "MelfaRXM.ocx", refer to “14 MelfaRXM.ocx Communications Middleware Setup”.
In case of using only the function of “RT ToolBox2”, you don't need to install this software.
1.3. **Items to be prepared by the customer**

This explains what the customer needs to prepare in order to use this software

1.3.1. **Computer system**

Use a computer that meets the specifications given in: "1.4 Operating Environment".

1.3.2. **Computer cable**

Prepare the cable for connecting the controller and the computer. The cable required depends on the connection specifications and controller used, as shown below.

For the RS-232 cable refer to the "Standard Specifications" for your robot.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Model name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>USB A type, USB mini B type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>10BASE-T, 100BASE-TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-232</td>
<td>For controller front panel</td>
<td>CRn-700 series</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D-232CBL03M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRn-500 series</td>
<td>Mitsubishi Electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS-MAXY-CBL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS-AT-RCBL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(for expansion serial interface (option))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For expansion option box (CR1-EB3)</td>
<td>RS-AT-RCBL</td>
<td>Mitsubishi Electric</td>
</tr>
</tbody>
</table>

Table 1-1 CRnD-700 Series, CRn-500 Series Communication Cables

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Model name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>USB A type to mini B type</td>
<td>ZUM-430</td>
<td>Loas Co.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USB-M53</td>
<td>Elecom Co.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT09-C20USB-5P</td>
<td>Mitsubishi Electric System Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR-J3USBCBL3M</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>10BASE-T, 100BASE-TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-232</td>
<td>For connecting by personal computer - PLC CPU (when Personal computer connector is D-sub, 9-pin)</td>
<td>QC30R2</td>
<td>Mitsubishi Electric</td>
</tr>
</tbody>
</table>

Table 1-2 CRnQ-700 Series Communication Cables
1.4. Operating Environment

This explains the operating environment.

1.4.1. Connectable robot controllers

This software can be connected with the robot controllers shown below

<table>
<thead>
<tr>
<th>Robot controller</th>
<th>Communications (*1)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrnD-700 series</td>
<td>USB (*2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet (TCP/IP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
<tr>
<td>CrnQ-700 series</td>
<td>CRnQ communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USB (*2)</td>
<td>The PLC Ethernet interface module is required.</td>
</tr>
<tr>
<td></td>
<td>Ethernet (TCP/IP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
<tr>
<td>CRn-500 series</td>
<td>Ethernet (TCP/IP)</td>
<td>The robot controller must have the "Ethernet interface" option.</td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
</tbody>
</table>

(*1) The computer must have each ports for communications.

(*2) When using USB connection, 1 computer can connect to only 1 robot controller.

This software can be connected to a maximum of 32 controllers at the same time. These controllers may be different models.
1.4.2. **Computer system**

This software operates on PC/AT compatible computers that meet the following specifications.

<table>
<thead>
<tr>
<th>Item</th>
<th>Recommended environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Pentium III 1 GHz or higher</td>
</tr>
<tr>
<td>Main memory</td>
<td>512 MB min.</td>
</tr>
<tr>
<td>Hard disk</td>
<td>Available capacity 300 MB min.</td>
</tr>
<tr>
<td>Display</td>
<td>XGA (1024x768) or higher</td>
</tr>
<tr>
<td>Optical device</td>
<td>CD-ROM drive</td>
</tr>
<tr>
<td>Keyboard</td>
<td>PC/AT compatible keyboard</td>
</tr>
<tr>
<td>Pointing device</td>
<td>Must operate on Windows</td>
</tr>
<tr>
<td>Communications functions</td>
<td></td>
</tr>
<tr>
<td>Communications port</td>
<td></td>
</tr>
<tr>
<td>- USB2.0</td>
<td>(Caution: This cannot be used for connection with the CRn-500 series controller.)</td>
</tr>
<tr>
<td>- LAN: 100Base-TX/10Base-T</td>
<td></td>
</tr>
<tr>
<td>- RS-232 communications port that operates on Windows (Minimum 9600bps: 1 port)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Must have one of the above interfaces</td>
</tr>
<tr>
<td>OSs for which operation is warranted</td>
<td>Windows 2000 Professional</td>
</tr>
<tr>
<td></td>
<td>Windows XP Professional (*1)</td>
</tr>
<tr>
<td></td>
<td>Windows XP Home Edition (*1)</td>
</tr>
<tr>
<td></td>
<td>Windows Vista Ultimate (*1)</td>
</tr>
<tr>
<td></td>
<td>Windows Vista Business (*1)</td>
</tr>
<tr>
<td></td>
<td>Windows Vista Home Premium (*1)</td>
</tr>
<tr>
<td></td>
<td>Windows Vista Home Basic (*1)</td>
</tr>
<tr>
<td></td>
<td>English versions for each edition</td>
</tr>
</tbody>
</table>

*1: Only supports 32-bit versions
1.5. Installation, Uninstallation

This section explains the method for installing the software and the method for uninstalling it.

Caution

Uninstall the old version before installing the new one.

If an old version of "RT ToolBox2" is installed, uninstall the old version of "RT ToolBox2", then install the new version of "RT ToolBox2".

1.5.1. Installation

Caution

When installing, log in as a user with administrator authority.

When installing, log in as a user with administrator authority. The system will not let you install if you log in as a user who does not have administrator authority.

Install this software with the procedure below.

(1) When you insert this product into the computer's CD-ROM drive, the setup screen is displayed automatically.

(2) If the setup screen is not displayed when you insert this product into the computer's CD-ROM drive, display the setup screen with the following method.
 - For any OS other than Windows Vista
 - In Windows Vista, when using the [Start] menu with the classic display
 1) Select [Start] button -> [Run].
 2) Check the CD-ROM drive name, then input "drive name":\Setup.exe.
 (If the CD-ROM drive is "D:", input "D:\Setup.exe".)
 - In Windows Vista, when not using the [Start] menu with the classic display
 1) Click [Start] button -> [All Programs] -> [Accessories], then select [Run].
 2) Check the CD-ROM drive name, then input "drive name":\Setup.exe.
 (If the CD-ROM drive is "D:", input "D:\Setup.exe".)

With Windows Vista, when using the classic display, when not using the [Start] menu with the classic display, you can use the [Start] menu Search box instead of executing the [Run] command.
* Product ID is printed on the Certificate of License permission
* After the installation is completed, the computer should be likely to be rebooted.
About the confirmation and warning message displayed during installation

During installation on Windows XP or Windows Vista, the following confirmation and warning messages are displayed, but select to continue installation. If you select not to install, please execute the installation again.

(1) Installation confirmation message for USB driver software (for Windows XP)

(2) Installation confirmation message for USB driver software (for Windows Vista)

(3) Installation warning message for USB driver software (for Windows Vista)

<Remark>
We have confirmed operation at our company. No problem occurs after installation.
1.5.2. Uninstall

Uninstall with the following method.

- For any OS other than Windows Vista
 Execute [Start] – [Control Panel] [Program Add and Delete].

- Windows Vista
 Open [Start] – [Control Panel].

 When not using the classic display
 With [Control Panel] [Program], execute [Uninstall Program].

 For classic display
 With [Control Panel] [Program Functions], select the application name, then execute the uninstallation.

Table 1-2 Uninstalling Applications (WindowsXP)
1.5.3. USB driver (CRnD-700 series robot controller) installation

Connecting the CRnD-700 series robot controller with USB requires installation of the robot USB driver. Install with the following procedure.

> Caution

If the USB driver cannot be installed, check the following setting.

<When Windows 2000 is used>
If you have selected "Block-Prevent installation of unsigned files" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed.
Choose "Install all files, regardless of file signature" or "Warn-Display a message before installing an unsigned file" for [Driver Signing], and install the USB driver.

<When Windows XP is used>
If you have selected "Block-Never install unsigned driver software" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed.
Choose "Ignore-Install the software anyway and don't ask for my approval" or "Warn-Prompt me each time to choose an action" for [Driver Signing], and install the USB driver.

1.5.3.1. When using Windows 2000

When you connect the CRnD-700 robot controller and the computer with a USB cable, installation starts and completes automatically.

1.5.3.2. When Using Windows XP

Below is the installation procedure for the USB driver using Windows XP (Professional).

1) When you connect the computer and CRnD-700 series robot controller with a USB cable, the screen on the left is displayed. Select "Install the software automatically (Recommended)", then click the [Next] button. Installation of the USB driver starts.
2) When the screen on the left is displayed, the installation is complete. Click the [Finish] button to end the installation.

1.5.3.3. When using Windows Vista

When you connect the CRnD-700 robot controller and the computer with a USB cable, installation starts and completes automatically.
1.5.4. CRnQ communications USB driver installation

Connecting the CRnQ-700 series robot controller with USB requires installation of the robot USB driver. Install with the following procedure.

⚠️ Caution

If the USB driver cannot be installed, check the following setting.

<When Windows 2000 is used>
If you have selected "Block-Prevent installation of unsigned files" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed.
Choose "Ignore-Install all files, regardless of file signature" or "Warn-Display a message before installing an unsigned file" for [Driver Signing], and install the USB driver.

<When Windows XP is used>
If you have selected "Block-Never install unsigned driver software" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed.
Choose "Ignore-Install the software anyway and don't ask for my approval" or "Warn-Prompt me each time to choose an action" for [Driver Signing], and install the USB driver.

1.5.4.1. When using Windows 2000

The following indicates the procedure for installing the USB driver when using Windows 2000.

1) The screen shown on the left appears when you connect the personal computer and Universal model QCPU by the USB cable.
Click the [Next] button.

2) Choose "Search for a suitable driver for my device [recommended]" and click the [Next] button.
3) Check "Specify a location" and click the [Next] button.

4) As the left screen appears, set the "C:\Melsec\EasySocket\USBDrivers" and click the [Next] button. If volume MELSOFT products have been installed, browse the installation destination "EasySocket\USBDrivers" of the first product.

5) The screen on the left appears to indicate completion of installation. Click the [Finish] button to terminate installation.
1.5.4.2. When using Windows XP

The following indicates the procedure for installing the USB driver when using Windows XP (Professional).

1) The screen shown on the left appears when you connect the personal computer and Universal model QCPU by the USB cable. Choose "Yes, now and every time I connect a device" and click the [Next] button.

2) As the screen on the left appears, choose "Install from a list or specific location [Advanced]" and click the [Next] button.

3) As the screen on the left appears, choose "Search for the best driver in these locations". Check "Include this location in the search" and set the "C:\Melsec\EasySocket\USBDrivers". After setting, click the [Next] button. If volume MELSOFT products have been installed, browse the installation destination "EasySocket\USBDrivers" of the first product.
4) As the screen on the left appears, click the [Continue Anyway] button to continue the installation of the USB driver. (No problem will occur after installation of the USB driver.)

5) The screen on the left appears to indicate completion of installation. Click the [Finish] button to terminate installation.

1.5.4.3. When using Windows Vista

The following indicates the procedure for installing the USB driver when using Windows Vista (Business).

1) The screen shown on the left appears when you connect the personal computer and Universal model QCPU by the USB cable. Select "Locate and install driver software (recommended)" and wait for the search to end.
2) The screen on the left is displayed, so select "Browse my computer for driver software (advanced)".

3) The screen on the left is displayed, so select "C:\Melsec\EasySocket\USBDrivers". After making the setting, click the [Next] button. When multiple MELSOFT products are installed, set the default product installation folder "EasySocket\USBdrivers".

4) The screen on the left is displayed, so select "Install this driver software anyway".

5) The screen on the left is displayed. Click the "Close" button. This completes the installation.
1.5.5. CRnQ Communications USB driver for GOT transparent installation

Connecting the CRnQ-700 series robot controller with USB via GOT transparent mode requires installation of the USB driver for the GOT transparent. Install with the following procedure. This function is available from RT ToolBox2 Ver.1.1 or later.

⚠️ Caution

If the USB driver cannot be installed, check the following setting.

<When Windows 2000 is used>
If you have selected "Block-Prevent installation of unsigned files" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed. Choose "Ignore-Install all files, regardless of file signature" or "Warn-Display a message before installing an unsigned file" for [Driver Signing], and install the USB driver.

<When Windows XP is used>
If you have selected "Block-Never install unsigned driver software" after [Control Panel] - [System] - [Hardware] - [Driver Signing], the USB driver may not be installed. Choose "Ignore-Install the software anyway and don't ask for my approval" or "Warn-Prompt me each time to choose an action" for [Driver Signing], and install the USB driver.

1.5.5.1. When using Windows 2000

When you connect the GOT and the computer by the USB cable, installation starts and completes automatically.

1.5.5.2. When using Windows XP

The following indicates the procedure for installing the USB driver when using Windows (Professional)

1) The screen shown on the left appears when you connect the personal computer and GOT by the USB cable. Choose "Yes, now and every time I connect a device" and click the [Next] button.
2) As the screen on the left appears, select "Install the software automatically (Recommended)", then click the [Next] button.

3) As the screen on the left appears, click the [Continue Anyway] button to continue the installation of the USB driver.
 (No problem will occur after installation of the USB driver.)

4) The screen on the left appears to indicate completion of installation. Click the [Finish] button to terminate installation.

1.5.5.3. When using Windows Vista

When you connect the GOT and the computer by the USB cable, installation starts and completes automatically.
When Starting at the Same Time as Another Product

When starting this software and another one of our products at the same time, follow the following precaution. Correct communications and screen display are sometimes not possible.

Table 1-4 Precautions for Starting at the Same Time with Another Product

<table>
<thead>
<tr>
<th>Product name</th>
<th>Explanation</th>
<th>Precaution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT ToolBox computer support software</td>
<td>Older version of this software</td>
<td>Can not be used at the same time as this software</td>
</tr>
<tr>
<td>MELFA-Works</td>
<td>3D robot simulator</td>
<td>Can not be used at the same time as this software</td>
</tr>
<tr>
<td>MELFA-Vision</td>
<td>Network vision sensor software</td>
<td>Start this software first.</td>
</tr>
<tr>
<td>E/EN series computer support software for Windows</td>
<td>E/EN series software</td>
<td>Can not be used at the same time as this software</td>
</tr>
<tr>
<td>P/P-2</td>
<td>R-250R/R-300R series software</td>
<td>Can be used at the same time as this software</td>
</tr>
</tbody>
</table>
2. RT ToolBox2 Usage

This explains the usage of this software simply.

2.1. Starting RT ToolBox2

When you install this software, a shortcut is prepared on the desktop. Start RT ToolBox2 by double clicking this short cut.

From [Start] button -> [All Programs] -> [MELSOFT Applications], select [RT ToolBox2] and start it.

![Figure 2-1 RT ToolBox2 Shortcut](image1)

![Figure 2-2 RT ToolBox2 Initial Screen](image2)

When you start RT ToolBox2, "Communications Server 2" is started up as an icon. This Communications Server 2 has functions for connecting with a robot controller or during a simulation, a virtual controller. Do not close Communications Server 2.

![Figure 2-3 Communication Server 2](image3)
2.2. **Explanation of RT ToolBox2 Screens**

The composition of the main RT ToolBox2 screen is as follows.

- **Title bar**: Displays the name of the workspace currently being edited.
- **Menu bar**: Contains options for navigating the software.
- **Tool bar**: Provides quick access to common functions.
- **Project tree**: Displays a hierarchical structure of project files.
- **Property window**: Shows detailed properties of selected items.
- **Status bar**: Indicates the status of the connection with the robot.

![Figure 2-4 Explanation of Main Screen](image)

The screen currently active is displayed on top. The status of the connection with the robot is displayed. The connection statuses are online, offline, and simulation.

Minimizes RT ToolBox2.

Click to close RT ToolBox2.

Maximizes/minimizes RT ToolBox2.

Displays the name of the workspace currently being edited.

After the size is changed, you can close RT ToolBox2.
(2) Menu bar
Displays the names of the menus that can be used in RT ToolBox2.
When a menu is selected, a dropdown menu is displayed from which you can use various functions.

![Menu bar example]

The menu bar display contents and their enabled/disabled status depend on which screen is currently active.

(3) Dropdown menu
Displays the names of the functions you can use in RT ToolBox2.
When you click a function name, it displays a screen with the settings etc. for the selected function.
When "▼" is displayed at the right end of a dropdown menu, a dropdown menu for the selected function is displayed.

![Dropdown menu example]

(4) Tool bar
Displays buttons for the functions assigned to the menu bar.

![Tool bar example]

The tool bar display depends on which screen is currently active and on the robot connection status.
(5) Project tree
Displays a list of all the projects registered in the workspace and by functions.
From this tree, the program edit screen, monitor screen, etc. can be started.

The project tree is a docking window. By dragging the title section with the mouse, you can dock the project tree at the top, bottom, left, or right edge of the main screen.

When the project tree is closed, you can display it again by clicking on the menu bar [View] -> [Project Tree].

(6) Property window
You can reference various attributes of the workspace being edited.
If you click an item on the project tree, its attributes are displayed.

The property window is a docking window. By dragging the title section with the mouse, you can dock the project tree at the top, bottom, left, or right edge of the main screen.

The default setting for the property window is not to be displayed. You can display the property window with the menu bar [View] -> [Property].
(7) Screens
Displays the screens that can be started from the project tree, including the program edit screen and monitor screen. The currently active screen is displayed on top.

To close a screen click the [x] at the top right of the screen. You can also change the screen size with the button at the top right of the screen.

Minimizes the screen. Closes the screen.

Maximizes/minimizes the screen.

(8) Status bar
Displays RT ToolBox2 status information.

The status of the connection with the robot is displayed. The connection statuses are online, offline, and simulation.

Displays the Num Lock status.

During program editing, displays the cursor position.

Displays the Caps Lock status.

(9) Handy menu display
By clicking the right button on the mouse, you can display the right button menu, depending on the work contents. Using this menu can increase work efficiency.
During program editing, the right button menu includes such functions as [Copy], [Paste], and [Cut].
2.3. Communications Server 2

When you start RT ToolBox2, "Communications Server 2" is started up as an icon. This Communications Server 2 has functions for connecting with a robot controller or during a simulation, a virtual controller.

![Figure 2-5 Communications Server 2 as Icon](image)

Caution

Do not close Communication Server 2 manually.

Communication Server 2 has functions for connecting to a robot controller or during simulation, a virtual controller. Do not close Communication Server 2. Communication Server 2 closes automatically when RT ToolBox2 is closed.

Turn Communication Server 2 into an icon.

Turn Communication Server 2 into an icon with the button.

When you return Communications Server 2 from an icon to its original size, you can check the status of the connection with the robot.

![Figure 2-6 Communication Server2](image)

(1) Title bar
(AA/BB) AA: shows the number of robot controllers with which connections are established and BB: shows the number of projects switched online.

(2) Line State
The connection status of the communication line with the robot is displayed. The status color indicates the status of the robot controller that is currently being selected.

<table>
<thead>
<tr>
<th>Status</th>
<th>Content</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting</td>
<td>Indicates that the connection with the robot has been established.</td>
<td>Blue</td>
</tr>
<tr>
<td>Connection wait</td>
<td>Indicates that a communication to verify connection is being made in the case of RS-232 connection. Indicates the wait status for communication port connection in the case of TCP/IP connection.</td>
<td>Green</td>
</tr>
<tr>
<td>Connection error</td>
<td>Displayed when the data reception enable signal cannot be detected because a cable has been disconnected or the robot has not been started in the case of RS-232 connection. Displayed when the communication port cannot be opened in the case of TCP/IP connection.</td>
<td>Red</td>
</tr>
<tr>
<td>Communication Setting error</td>
<td>Displayed when the communication port cannot be opened in the case of RS-232 connection. This is not displayed in the case of TCP/IP connection</td>
<td>Red</td>
</tr>
<tr>
<td>Waiting</td>
<td>Indicates the idling status displayed at the start of remote maintenance.</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
(3) Communication State
 The contents of communication with the robot controller are displayed.

(4) Robot
 This changes the robot controller for which the "Line status" and "Communication status" are displayed. This is only displayed for robot controllers that are online or have been switched to simulation status.

(5) Robot Information
 Information on the currently connected robot can be referenced.

 ![Figure 2-7 Connected Robot Information]

Caution

Cautions when connected on USB with CRnQ communications

When connected on USB with CRnQ communications, after connecting normally, if the communications are cut off due to any of the following external causes, the line status display remains "Connected". If this happens, return this software offline, remove the cause of the cutoff, and then go back online.

- The robot controller power supply went off.
- The communication cable was disconnected.

2.4. Closing RT ToolBox2

To close RT ToolBox2, on the menu bar, click [Workspace] -> [Close Application]. You can also close with the [X] button on the top right of the screen.

When you close RT ToolBox2, Communications Server 2 also closes automatically.
3. Basic Functions

The basic functions of this software are shown below.

Table 3-1 RT ToolBox2 Basic Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td></td>
</tr>
<tr>
<td>Robot model</td>
<td>Targets files on the computer.</td>
</tr>
<tr>
<td>Program</td>
<td>Displays the model of the robot used.</td>
</tr>
<tr>
<td>Program</td>
<td>Displays the names of the robot programs written on the computer.</td>
</tr>
<tr>
<td>Online</td>
<td>These are used with the robot controller connected.</td>
</tr>
<tr>
<td>Robot model</td>
<td>Displays the model of the robot connected to the robot controller.</td>
</tr>
<tr>
<td>Program</td>
<td>Displays the names of the programs stored on the robot controller.</td>
</tr>
<tr>
<td>Parameters</td>
<td>The parameters can be set individually.</td>
</tr>
<tr>
<td>Parameter list</td>
<td>The parameters can be set by robot function individually.</td>
</tr>
<tr>
<td>The functions are as follows.</td>
<td></td>
</tr>
<tr>
<td>• Operating range</td>
<td>Free plane limit</td>
</tr>
<tr>
<td>• Jog</td>
<td>Evacuation point</td>
</tr>
<tr>
<td>• Hand</td>
<td>Robot language</td>
</tr>
<tr>
<td>• Weight and size</td>
<td>Added axes</td>
</tr>
<tr>
<td>• Tool</td>
<td>Collision detection</td>
</tr>
<tr>
<td>• Slot table</td>
<td>Heater operation</td>
</tr>
<tr>
<td>• Output signal reset pattern</td>
<td>Operation parameters</td>
</tr>
<tr>
<td>• Dedicated input/output signal allocation</td>
<td>Program parameters</td>
</tr>
<tr>
<td>• RS-232 settings</td>
<td>User error</td>
</tr>
<tr>
<td>• Zone</td>
<td>Ethernet setting</td>
</tr>
<tr>
<td>Monitors</td>
<td></td>
</tr>
<tr>
<td>Operation monitor</td>
<td>You can reference the slot status, program, monitor, operation status, and current errors.</td>
</tr>
<tr>
<td>Signal monitor</td>
<td>You can check the statuses of signals input to the robot and signals output from the robot.</td>
</tr>
<tr>
<td>Work monitor</td>
<td>You can check the robot work time and production information for each robot program.</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Home position data</td>
<td>This sets the robot home position.</td>
</tr>
<tr>
<td>Initialization</td>
<td>This sets the robot controller’s internal time, deletes all the programs in the controller, initializes the battery time remaining, and sets the serial number for the connected robot.</td>
</tr>
<tr>
<td>Maintenance forecast</td>
<td>Forecasts the time for maintenance.</td>
</tr>
<tr>
<td>Position repair</td>
<td>Supports recovery from home position deviation</td>
</tr>
<tr>
<td>Servo monitor</td>
<td>Monitors servo system information.</td>
</tr>
<tr>
<td>Option card</td>
<td>You can check information on option cards mounted in the robot controller.</td>
</tr>
<tr>
<td>Simulation</td>
<td>This can be used connected with a virtual robot.</td>
</tr>
<tr>
<td>*This can only be used with the standard edition.</td>
<td></td>
</tr>
<tr>
<td>Same functions as online</td>
<td>The same functions can be used with a virtual robot controller as with an online one.</td>
</tr>
<tr>
<td>Tact time measurement</td>
<td>The tact time for the robot program with the specified contents can be measured in the simulation.</td>
</tr>
<tr>
<td>Backup, restore</td>
<td>You can back up the information in the robot controller and restore backed up information into the controller.</td>
</tr>
</tbody>
</table>
4. Workspaces and Projects

This explains about workspaces and projects.

4.1. Workspaces and Projects

This software has workspaces and projects.

The information for one controller is managed as one project. A workspace can manage up to 32 projects. If Ethernet is used for communications, you can simultaneously reference information on multiple projects (robot controllers) registered in the workspace.

When using multiple robot controllers, it is convenient to manage with separate workspaces for each manufacturing line and installation location.

(1) Using multiple robot controllers (up to 32)

You can connect multiple controllers at the same time.

You can reference the information for multiple controllers at the same time.

(2) Using 1 robot controller

You cannot edit multiple workspaces at the same time.

With this software, you cannot edit multiple workspaces at the same time. Register into a single workspace all the projects (controllers) you want to reference at the same time.

Simultaneous connection with 32 units

The maximum of 32 robot connections is a theoretical value. It does not guarantee that if you actually connect 32 robots, you will achieve the same performance as when only 1 robot is connected. For example, if you monitor all the robots when 32 are connected, status updating is slower than for when 1 robot is connected.

Workspace editing and storage and project addition etc. are explained from the next section on.
Caution

Update workspaces and projects offline.

In the online status or while a simulation is running, you cannot perform the following operations. Switch offline, then perform the operations.

- Opening an existing workspace
- Saving the workspace with a different name
- Adding a project
- Changing a project name
- Deleting a project

For details on switching offline, see "4.14 Offline/Online/Simulation".
4.2. Creating a New Workspace

Click [Workspace] -> [New Workspace] or click \(\text{Ctrl} + \text{N} \).

![New Workspace](image)

Figure 4-3 Creating a New Workspace

Input the workspace name and title, then click the [OK] button.

![Screen After New Workspace Created](image)

Figure 4-4 Screen After New Workspace Created

The project tree is displayed in the workspace and the "RC1" project is created as the default value. This project name can be change later. For details, see "4.10 Changing a Project Name".

⚠️ **Caution**

Workspace names

Workspace names are used as folder names in Windows, so you can not use characters that can not be used in Windows folders names (¥ / : * ? " < > |).

Once a workspace has been created, you can not change its name.

Be aware that once a workspace has been created, you can not change its name. To change the name of a workspace, select "Workspace" on the menu -> "Save As", save with the name you want to change to, then delete the original workspace with the old name.
4.3. Opening an Existing Workspace

To open an already existing workspace, click [Workspace] -> [Open] or click (Ctrl + O). After selecting the workspace to edit, click the [OK] button.

![Figure 4-5 Opening a Workspace](image)

The names of the last up to four workspaces used are added to [Workspace] on the menu bar. You can open one of these workspaces by clicking its name here.

![Figure 4-6 Recently Used Workspace Names](image)

4.4. Closing a Workspace

To close the workspace being edited, click [Workspace] -> [Close]. Note that to delete a workspace, you must close it first.
4.5. Deleting a Workspace

Click [Workspace] -> [Delete]. The "Delete Workspace" screen is displayed, so check the name of the workspace to delete, then click the [OK] button.

![Figure 4-7 Deleting a Workspace]

Caution

Deleting a workspace

To delete a workspace, close that workspace. You can not delete a workspace that is being edited.

4.6. Saving a Workspace

The information added to the workspace is saved automatically.

You can also save a workspace with a different name. Click [Workspace] -> [Save As], input the new workspace name and title, then click the [OK] button.

![Figure 4-8 Save As]
4.7. Changing a Workspace Name

Once a workspace has been created, you can not directly change its name. To change a workspace name, use the menu bar [Workspace] -> [Save As] to save the workspace with the desired new name, then delete the old workspace.

4.8. Changing a Workspace Title

You can change the title of a workspace even after it has been created. Click the name of the workspace with the right button on the mouse, then click "Edit workspace title" on the right button menu. The workspace title screen is displayed, so input the new workspace title, then click the [OK] button.

Figure 4-9 Changing a Title
4.9. Adding a Project

You can create up to 32 projects in one workspace. Click [Workspace] -> [Add Project].

Set the project name, information on the robot connected, and the communication method, then click the [OK] button. The project is added to the workspace.

Projects can also be added from a project tree. After selecting the workspace, use the mouse right button to select [Add project].
4.10. Changing a Project Name

You can change the name of a project even after it has been created. Click the name of the project with the right button on the mouse, then click “Edit Project” on the right button menu. The project edit screen is displayed, so input the new workspace title, then click the [OK] button.

![Figure 4-12 Changing a Project Name](image)

4.11. Deleting a Project

A project cannot be deleted when it is running a simulation or has a robot connected online. Click the name of the project with the right button on the mouse, then click “Delete Project” on the right button menu. The deletion confirmation message is displayed, so check that you have clicked the correct project name, then click the [OK] button.

![Figure 4-13 Deleting a Project](image)
4.12. Contents of Project Tree

A project tree shows the current workspace’s project configuration in a hierarchical manner. You can start all functions from the project tree, including program editing, monitor, etc.

The contents of the project tree depend on the state of connection with the robot controller.

![Figure 4-14 Structure of Project Tree in Workspace](image)

(1) Offline
Displays the information stored in computer.
Displays the currently set robot model and the name of robot programs created.

(2) Online
The "Online" section is displayed when a robot is switched into being connected online with its controller or starts a simulation. This section displays the connected robot model and the information items that can be referenced in the controller or a simulation controller.

(3) Backup
Controls the information backed up from the controller.

4.13. Copying Programs Between Projects

To copy or move a created robot program to another project, do this with program management. For details on the operation methods, see "7.10 Program Management", "7.10.2 Copy", or "7.10.3 Move".
4.14. Offline/Online/Simulation

The project status are offline, online, and simulation. The meaning of each status and the contents displayed in the project tree are shown below.

<table>
<thead>
<tr>
<th>Status</th>
<th>Explanation</th>
<th>Project tree display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td>Targets files stored on the computer. When a robot is offline, the icon displayed on the left of the project name on the project tree turns green and Offline and Backup are displayed on the project tree.</td>
<td>[Image: RT ToolBox2 offline status]</td>
</tr>
<tr>
<td>Online</td>
<td>The robot is connected to the robot controller and you can check and change the information in the controller. When a robot is online, the icon displayed on the left of the project name on the project tree turns blue and Offline, Online, and Backup are displayed on the project tree.</td>
<td>[Image: RT ToolBox2 online status]</td>
</tr>
<tr>
<td>Simulation</td>
<td>This targets a virtual robot controller running on the computer and you can check and change the information in the virtual controller. When a simulation is running, the icon displayed on the left of the project name on the project tree turns blue and Offline, Online, and Backup are displayed on the project tree.</td>
<td>[Image: RT ToolBox2 simulation status]</td>
</tr>
</tbody>
</table>

When this software starts, it goes into "Offline" status.

Caution

The simulation function only supports the "RT ToolBox2" standard edition. It can not be used with the mini edition. Also, please be aware that even with the standard edition, the simulation function can not be used when Movemaster commands are selected.

To switch among offline, online, and simulation, do so from [Online] on the menu bar or from the tool bar. With the tool bar, you can switch as follows.

Switch to "Offline".

Switch to "Online".

Switch to "Simulation".

[Image: RT ToolBox2 tool bar explanation]
The current status and the statuses into which the current status can be switched are as followed.

Table 4-2 Current Status and Switchable Status

<table>
<thead>
<tr>
<th>Current status</th>
<th>Switchable status</th>
<th>Menu bar [Online] display</th>
<th>Tool bar display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td>Can be switched to online or simulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online</td>
<td>Can only be switched to offline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>Can only be switched to offline.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The current status is displayed checked at [Online] on the menu bar.

When switching to online or simulation, if multiple projects are registered in the workspace being edited, the project selection screen is displayed as in "Figure 4-16 Screen for Selecting Project to Switch Online". Check only the project to be switched online or to simulation, then click [OK]. Only one project can be switched to simulation. This screen is not displayed if there is just one project in the workspace.

![Figure 4-16 Screen for Selecting Project to Switch Online](image)

Caution

 weer using Ethernet, do not set an unconnected controller "Online".

When using Ethernet, if you try to switch "Online" a robot controller that is not connected, incessant retries are made, which slows execution. Set "Offline" a robot controller that is not connected or whose power is Off.

Do not connect from multiple projects to 1 controller at the same time.

Do not connect from multiple projects to 1 controller at the same time. Data might not be able to be read correctly referring to the same data.

Do not connect USB to multiple controllers from 1 computer.

When using USB connection, 1 computer can connect to only 1 robot controller. It is also not possible to connect to multiple controllers by using the USB hub.
5. Connecting with the Robot

This explains the method for connecting the robot controller and the computer. With this software, you must make the communication settings for each project.

5.1. Robots Connected and Types of Communication

When connecting the robot controller and computer, there are the methods shown below. Be aware that the connection method that can be used is restricted by the robot controller connected.

<table>
<thead>
<tr>
<th>Robot Controller</th>
<th>Communication Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRnD-700 series</td>
<td>USB (*4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet(TCP/IP) (*1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
<tr>
<td>CRnQ-700 series</td>
<td>CRnQ communication (*2)</td>
<td>The PLC Ethernet interface module is required.</td>
</tr>
<tr>
<td></td>
<td>Ethernet (TCP/IP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
<tr>
<td>CRn-500 series</td>
<td>Ethernet(TCP/IP) (*3)</td>
<td>The robot controller must have the "Ethernet interface" option.</td>
</tr>
<tr>
<td></td>
<td>RS-232</td>
<td></td>
</tr>
</tbody>
</table>

(*1) For details on the communication settings on the robot controller side for CRn-700 series controllers, see "Operations and Detailed Explanation" and "Standard Specifications" in the user's manual for the robot controller.

(*2) For details on the communication settings on the robot controller side for CRnQ-700 series controllers, see "Operations and Detailed Explanation" and "Standard Specifications" in the user's manual for the robot controller.

Moreover, please use the "GX Developer" to set the communication setting of PLC.

(*3) For details on Ethernet connections on the robot controller side for CRn-500 series controllers, see the "Ethernet Interface Option User's Manual".

(*4) When using USB connection, 1 computer can connect to only 1 robot controller.
5.2. Connection Settings

Click the name of the project to display the project tree for with the right button of the mouse, then from the right button menu, click [Edit Project]. The project edit screen is displayed.

![Connection Settings](image)

Select the controller to connect to and the communications method, then click the "Detailed Settings" button to set the details.

Normally, the offline robot settings and the travel platform settings for display are also set according to the controller connected to.

After you complete the details settings, click the [OK] button.

The detailed settings screen will be explained from the next item.

Caution

Do not connect from multiple projects to 1 controller at the same time.

Do not connect from multiple projects to 1 controller at the same time. Data might not be able to be read correctly referring to the same data.

Do not connect USB to multiple controllers from 1 computer.

When using USB connection, 1 computer can connect to only 1 robot controller. It is also not possible to connect to multiple controllers by using the USB hub.
5.2.1. USB Communication Settings

![USB Communication Protocol](image)

Figure 5-2 USB Communication Settings

Table 5-2 TCP/IP Communication Setting Items and Default values

<table>
<thead>
<tr>
<th>Item</th>
<th>Explanation</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send timeout</td>
<td>Timeout time for sending</td>
<td>3000 msec</td>
</tr>
<tr>
<td>Receive timeout</td>
<td>Timeout time for receiving</td>
<td>3000 msec</td>
</tr>
<tr>
<td>Retries</td>
<td>Number of communication retries</td>
<td>3</td>
</tr>
</tbody>
</table>

When the USB cable is connected to the computer, the screen for installing the USB driver may be displayed. For details on USB driver installation, see "1.5.3 USB driver (CRnD-700 series robot controller) installation."

5.2.2. TCP/IP (Ethernet) Communication Settings

Input the IP address assigned to the robot controller connected to, then click the [OK] button.

![TCP/IP Communication Protocol](image)

Figure 5-3 TCP/IP Communication Settings

Table 5-3 TCP/IP Communication Setting Items and Default Values

<table>
<thead>
<tr>
<th>Item</th>
<th>Explanation</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>Sets the IP address of the robot controller connected to.</td>
<td>Blank</td>
</tr>
<tr>
<td>Port used</td>
<td>Number of the port used for communications</td>
<td>10001</td>
</tr>
<tr>
<td>Send timeout</td>
<td>Timeout time for sending</td>
<td>1000 msec</td>
</tr>
<tr>
<td>Receive timeout</td>
<td>Timeout time for receiving</td>
<td>20000 msec</td>
</tr>
<tr>
<td>Retries</td>
<td>Number of communication retries</td>
<td>3</td>
</tr>
</tbody>
</table>

For help with the computer side network settings (IP address, subnet mask, default gateway, etc.), ask the network administrator.

⚠️ **Caution**

When connecting to 10 or more robot controllers at the same time.

When connecting to 10 or more robot controllers at the same time, set the reception timeout time to at least 10000 msec.
5.2.3. RS-232 Communication Settings

Change the RS-232 communication settings to match the robot controller side communications settings.

![Figure 5-4 RS-232 Communication Settings]

<table>
<thead>
<tr>
<th>Item</th>
<th>Explanation</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port used</td>
<td>COM1 – COM10 can be selected.</td>
<td>COM1</td>
</tr>
<tr>
<td>Communications</td>
<td>Select from 4800, 9600, and 19200.</td>
<td>9600</td>
</tr>
<tr>
<td>Character size</td>
<td>7 or 8 can be selected, but select 8.</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None, Odd, or Even can be selected.</td>
<td>EVEN</td>
</tr>
<tr>
<td>Stop bit</td>
<td>Select from 1, 1.5, and 2.</td>
<td>2</td>
</tr>
<tr>
<td>Send timeout</td>
<td>Timeout time for sending</td>
<td>5000 msec</td>
</tr>
<tr>
<td>Receive timeout</td>
<td>Timeout time for receiving</td>
<td>30000 msec</td>
</tr>
<tr>
<td>Retries</td>
<td>Number of communication retries</td>
<td>3</td>
</tr>
<tr>
<td>Usage protocol</td>
<td>Non-Procedural or Procedural can be selected.</td>
<td>Procedural</td>
</tr>
</tbody>
</table>

Set the following to perform a high-speed, stable communication.

- Baud rate : 19200 bps
- Protocol used : Procedural

It is also necessary to change the communication settings of the robot controllers at this time.
5.2.4. CRnQ Communications Settings

The CRnQ communication is the method to connect with the CRnQ-700 series controller by using the PLC Universal model QCPU module or the PLC Ethernet Interface module. When using RS-232 or USB, please connect to connector of the PLC Universal model QCPU module. When using Ethernet, please connect to connector of the PLC Ethernet Interface module.

![Figure 5-5 CRnQ Communications Settings](image)

On the CRnQ communications setting screen, when you select the computer interface, the communications routes using the selected interface are displayed at the bottom of the screen. Select the communications route, then press the [Detailed Settings] button. The detailed settings screen corresponding to the selected communications route is displayed. These detailed settings will be explained from the next item.

5.2.4.1. When RS-232 is selected

When "RS-232" is selected as the computer interface, the communications routes that can be selected are as follows.

**Table 5-5 Communications Routes That Can Be Selected for "RS-232"

<table>
<thead>
<tr>
<th>No.</th>
<th>Communications routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Serial communications CPU unit connection</td>
</tr>
<tr>
<td>2</td>
<td>Serial communications Serial communications other station access through CPU unit</td>
</tr>
<tr>
<td>3</td>
<td>Serial communication NET/0(H) other station access through CPU unit</td>
</tr>
<tr>
<td>4</td>
<td>Serial communication CC-Link other station access through CPU unit</td>
</tr>
<tr>
<td>5</td>
<td>Serial communication Ethernet other station access through CPU unit</td>
</tr>
<tr>
<td>6</td>
<td>Serial communication Serial communication through CPU unit - NET/10(H) other station access</td>
</tr>
<tr>
<td>7</td>
<td>Serial communication Serial communication through CPU unit-Ethernet other station access</td>
</tr>
<tr>
<td>8</td>
<td>Serial communication NET/10(H) through CPU unit - serial communication other station access</td>
</tr>
<tr>
<td>9</td>
<td>Serial communication NET/10(H) through CPU unit - CCLink other station access</td>
</tr>
<tr>
<td>10</td>
<td>Serial communication Ethernet through CPU unit - serial communication other station access</td>
</tr>
<tr>
<td>11</td>
<td>Serial communication Ethernet through CPU unit - CCLink other station access</td>
</tr>
<tr>
<td>12</td>
<td>Serial communication Ethernet through CPU unit - Ethernet other station access</td>
</tr>
<tr>
<td>13</td>
<td>Serial communication Ethernet through CPU unit - CCLink other station access</td>
</tr>
<tr>
<td>14</td>
<td>Serial communication Serial communication connection</td>
</tr>
<tr>
<td>15</td>
<td>Serial communication Other station access serial communication through serial communication</td>
</tr>
<tr>
<td>16</td>
<td>Serial communication Other station access NET/10(H) through serial communication</td>
</tr>
<tr>
<td>17</td>
<td>Serial communication Other station access CCLink through serial communication</td>
</tr>
<tr>
<td>18</td>
<td>Serial communication Other station access Ethernet communication through serial communication</td>
</tr>
<tr>
<td>No.</td>
<td>Communications routes</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
</tr>
<tr>
<td>19</td>
<td>Serial communication Serial communication through serial communication - NET/10(H) other station access</td>
</tr>
<tr>
<td>20</td>
<td>Serial communication Serial communication through serial communication - Ethernet other station access</td>
</tr>
<tr>
<td>21</td>
<td>Serial communication NET/10(H) through serial communication - serial communication other station access</td>
</tr>
<tr>
<td>22</td>
<td>Serial communication NET/10(H) through serial communication - CCLink other station access</td>
</tr>
<tr>
<td>23</td>
<td>Serial communication CCLink through serial communication - NET/10(H) other station access</td>
</tr>
<tr>
<td>24</td>
<td>Serial communication CCLink through serial communication - Ethernet other station access</td>
</tr>
<tr>
<td>25</td>
<td>Serial communication Ethernet through serial communication - serial communication other station access</td>
</tr>
<tr>
<td>26</td>
<td>Serial communication Ethernet through serial communication - CCLink other station access</td>
</tr>
<tr>
<td>27</td>
<td>Serial communication CCLink through G4 - NET/10(H) other station access</td>
</tr>
<tr>
<td>28</td>
<td>Serial communication CCLink through G4 – Ethernet other station access</td>
</tr>
<tr>
<td>29</td>
<td>Serial communication CCLink through G4 – Ethernet other station access</td>
</tr>
<tr>
<td>30</td>
<td>Serial communication Serial communication other station access through NET/10(H) remote</td>
</tr>
<tr>
<td>31</td>
<td>Serial communication NET/10(H) other station access through NET/10(H) remote</td>
</tr>
<tr>
<td>32</td>
<td>Serial communication CCLink other station access through NET/10(H) remote</td>
</tr>
<tr>
<td>33</td>
<td>Serial communication Ethernet other station access through NET/10(H) remote</td>
</tr>
<tr>
<td>34</td>
<td>Serial communication Serial communication other station access through NET/10(H) remote</td>
</tr>
<tr>
<td>35</td>
<td>Serial communication Serial communication other station access through NET/10(H) remote - Ethernet other station access</td>
</tr>
<tr>
<td>36</td>
<td>Serial communication NET/10(H) through NET/10(H) remote - Serial communication other station access</td>
</tr>
<tr>
<td>37</td>
<td>Serial communication NET/10(H) through NET/10(H) remote - CC-Link other station access</td>
</tr>
<tr>
<td>38</td>
<td>Serial communication CC-Link through NET/10(H) remote - NET/10(H) other station access</td>
</tr>
<tr>
<td>39</td>
<td>Serial communication CC-Link through NET/10(H) remote - Ethernet other station access</td>
</tr>
<tr>
<td>40</td>
<td>Serial communication Ethernet through NET/10(H) remote - Serial communication other station access</td>
</tr>
<tr>
<td>41</td>
<td>Serial communication Ethernet through NET/10(H) remote - CC-Link other station access</td>
</tr>
</tbody>
</table>

Figure 5-6 RS-232 (Serial Communication NET/10(H) through CPU Unit – CCLink Other Station Access) Detailed Settings

For some communications routes that you can select, "(5)Network communication route setting of MNET/10" and "(6)Coexistence network route setting of C24" cannot be set.
5.2.4.2. When USB is selected

When "USB" is selected as the computer interface, the communications routes that you can select are the same as for RS-232. See "Table 5-5 Communications Routes That Can Be Selected for "RS-232"."
5.2.4.3. When NET/10(H) is selected

When "NET/10" is selected as the computer interface, the communications routes that you can select are as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Communications Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NET/10 board communication Other station access through NET/10(H) unit</td>
</tr>
<tr>
<td>2</td>
<td>NET/10 board communication NET/10(H) through NET/10(H) unit – CC-Link other station access</td>
</tr>
<tr>
<td>3</td>
<td>NET/10(H) board communication NET/10(H) through NET/10(H) unit - Serial communication other station access</td>
</tr>
</tbody>
</table>

For some communications routes that you can select, "(5)Network communication route setting of MNET/10" and "(6)Coexistence network route setting of C24" can not be set.
5.2.4.4. When CC-Link is selected

When "CC-Link" is selected as the computer interface, the communications routes that you can select are as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Communications Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CC-Link board communication Other station access</td>
</tr>
<tr>
<td>2</td>
<td>CC-Link board communication CC-Link through CC-Link unit – NET/10(H) other station access</td>
</tr>
<tr>
<td>3</td>
<td>CC-Link board communication CC-Link through CC-Link unit – Ethernet other station access</td>
</tr>
</tbody>
</table>

For some communications routes that you can select, "(5)Network communication route setting of MNET/10" and "(6)Coexistence network route setting of C24" can not be set.
5.2.4.5. When Ethernet is selected

When "Ethernet" is selected as the computer interface, the communications routes that you can select are as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Communications Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethernet board communication Other station access through Ethernet unit</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet board communication Ethernet through Ethernet unit – Serial communication other station access</td>
</tr>
<tr>
<td>3</td>
<td>Ethernet board communication Ethernet through Ethernet unit – CC-Link other station access</td>
</tr>
</tbody>
</table>

For some communications routes that you can select, "(5)Network communication route setting of MNET/10" and "(6)Coexistence network route setting of C24" can not be set.
5.2.4.6. When Q series bus is selected

When the "Q series bus" is selected as the computer interface, the communication route that can be selected is as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Communications Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q bus communications CPU unit connection</td>
</tr>
</tbody>
</table>

Table 5-9 Communication Route That Can Be Selected with the "Q Series Bus"

Figure 5-11 Q Series Bus (Q Bus Communications CPU Unit Connection) Detailed Settings
6. Robot Program Language Setting

This switches the robot program language used. The languages you can switch to are as follows.

<table>
<thead>
<tr>
<th>Robot controller</th>
<th>MELFA-BASIC V</th>
<th>MELFA-BASIC IV</th>
<th>Movemaster command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRnD-700 series</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>CRnQ-700 series</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>CRn-500 series</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

The Movemaster commands are restricted by the robot models that can be used. Before trying to use Movemaster commands, check in the "Standard Specifications" that the model you are using supports Movemaster commands.

Also, this software allows you to select Movemaster commands for CRnD-700 series and CRnQ-700 series robot controllers, but these robot controllers themselves do not actually support Movemaster commands. (As of December 2007)

⚠️ **Caution**

When Movemaster commands are used, the simulation functions cannot be used.

On the project tree, click the desired project name with the right mouse button, then from the right button menu, select "Edit Project". The project edit screen is displayed.

Select the controller connected, the robot model, and the robot language used, then click the [OK] button.
7. Writing Programs

This chapter explains robot program editing methods. You can directly edit programs in the robot controller or edit programs stored on the computer.

⚠️ Caution

Program names that can not be handled on the computer

If a program name in the robot controller is the same as a "reserved term" in Windows, when you try to open that program for program editing, this causes an error. In this case, it is necessary to change the program name in the controller.

"Reserved terms" are special character strings that the Windows system uses and therefore can not be used as file names. These "reserved terms" are character strings such as the following.

- AUX, COM1 to COM9, CON, LPT1 to 9, NUL, PRN

7.1. Writing a New Program

7.1.1. Writing a new program on the computer

For the new program you are going to write, select [Offline] -> [Program], then click the right mouse button. The right button menu is displayed, so click [New].

Input the robot program name, then click the [OK] button.

⚠️ Caution

Folder in which programs are stored

Programs on the computer are managed in units of workspace projects. The folder they are stored into is workspace writing folder\workspace\project name\Program.

To store into any other folder, first store in this folder, then copy into the desired folder with the program management copy function.
7.1.2. Writing a new program in the robot controller

For the new program you are going to write, select [Online] -> [Program], then click the right mouse button. The right button menu is displayed, so click [New].

![Figure 7-2 Writing a New Program in a Robot Controller](image)

Input the robot program name, then click the [OK] button. The "Read Item" screen is displayed, so check the read items, then click the [OK] button. For details on the read items, see "7.2.3 Read Items when opening program in robot controller".

![Figure 7-3 Editing a New Program](image)
7.2. Opening an Existing Program

7.2.1. Opening an existing program on the computer

Open the target project in the project tree with [Offline] -> [Program]. The stored programs are displayed on the project tree, so double click the program you want to edit.

Figure 7-4 Opening a Program on the Computer

7.2.2. Opening a program in a robot controller

Open the target project in the project tree with [Online] -> [Program]. The stored programs are displayed on the project tree, so double click the program you want to edit.

Input the robot program name, then click the [OK] button. The "Read Item" screen is displayed, so check the read items, then click the [OK] button. For details on the read items, see "7.2.3 Read Items when opening program in robot controller".

Figure 7-5 Opening a Program in a Robot Controller
7.2.3. Read Items when opening program in robot controller

You can set the robot program read items divided into command lines, position variables, and program external position variables. This function is displayed after H1 edition on CRn-500 series controller.

The default values of read items are as follows.

The program external position variable read operations are shown in "Table 7-1". (For details on program external position variables, see "Details of functions and operations" in the robot controller's user's manual.)

<table>
<thead>
<tr>
<th>CRn-700 series robot controller</th>
<th>CRn-500 series robot controller's software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRn-700 series robot controller</td>
<td>Ver.J1 or later</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>Ver.H1 to H7</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>Ver.G9 or earlier</td>
</tr>
</tbody>
</table>

Table 7-1 Program External Position Variable Read Operations

<table>
<thead>
<tr>
<th>Read Item</th>
<th>Position variable, joint variable (P_01, J_02, etc.) (MOVEMASTER command : 901-999)</th>
<th>Position array variable, joint array variable (P_100(), J_102(), etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRn-700 series robot controller</td>
<td>☑ ☑ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
<tr>
<td>CRn-500 series robot controller</td>
<td>☑ ☐ ☑</td>
<td>☑ ☑ ☑</td>
</tr>
</tbody>
</table>

*1: When Movemaster commands are used, all external position variables are read.
*2: When only P_100(1) is used in the command statement, P_100(1) to P_100(10) are all read. However, the number of valid elements depends on the robot controller software version used.
7.3. Explanation of Program Edit screen

This explains the program edit screen.

![Figure 7-7 Explanation of Program Edit screen](image)

The top part of the screen is the program command statement edit screen and the bottom part is the position variable edit screen.

To change the position dividing the top and bottom screens, drag the border line with the mouse. This is handy when you want to expand the command edit screen, for example because there are many lines of commands.

This edit screen display area can be customized. For details, see "7.5.1 Changing the display area".

Also, the background color for the command edit screen depends on the robot language used.

Table 7-2 Command Edit Screen Background Color

<table>
<thead>
<tr>
<th>Robot language</th>
<th>Background color</th>
<th>Debugging</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELFA-BASIC V</td>
<td>White</td>
<td>Light blue</td>
</tr>
<tr>
<td>MELFA-BASIC IV</td>
<td>Light yellow</td>
<td></td>
</tr>
<tr>
<td>Movemaster commands</td>
<td>Light green</td>
<td></td>
</tr>
</tbody>
</table>

Debugging means when the program is opened in debugging status.
7.4. Program Editing Menu Bar

During program editing "File", "Edit", "Debug", and "Tool" are added to the menu bar.

![Figure 7-8 Program Editing Menu Bar](image)

The menus are as follows.

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Explanation</th>
<th>Menu item</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Saves the program being edited with its current name.</td>
<td>7.7.1</td>
</tr>
<tr>
<td>Save As -> PC</td>
<td>Saves the program being edited with its current name on the PC</td>
<td>7.7.2</td>
</tr>
<tr>
<td>Save As -> Robot</td>
<td>Saves the program being edited with its current name on Robot controller</td>
<td>7.7.3</td>
</tr>
<tr>
<td>Page Setup</td>
<td>You can customize the pages the program is printed with.</td>
<td>7.8.3</td>
</tr>
<tr>
<td>Edit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undo</td>
<td>Cancel the edition by the command and return to the previous state</td>
<td>7.6.4.2</td>
</tr>
<tr>
<td>Undo - Position variable</td>
<td>Cancel the edition by the position variable and return to the previous state</td>
<td></td>
</tr>
<tr>
<td>Cut</td>
<td>Cuts a character string from the command being edited.</td>
<td>7.6.4.1</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies a character string in the command being edited.</td>
<td>7.6.4.3</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the copied or cut character string to the specified location.</td>
<td>7.6.4.5</td>
</tr>
<tr>
<td>Copy - Position variable</td>
<td>Copies position data.</td>
<td>7.6.4.4</td>
</tr>
<tr>
<td>Paste - Position variable</td>
<td>This pastes the copied position data.</td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td>This searches for the specified character string.</td>
<td>7.6.4.6</td>
</tr>
<tr>
<td>Find in Files</td>
<td>This searches for the specified character string in the program files.</td>
<td>7.6.4.7</td>
</tr>
<tr>
<td>Replace</td>
<td>This replaces the specified character string with another character string.</td>
<td>7.6.4.8</td>
</tr>
<tr>
<td>Jump</td>
<td>Jumps to the specified step number or label.</td>
<td>7.6.4.9</td>
</tr>
<tr>
<td>Partial transmission</td>
<td>Writes the selected program lines to the robot controller. This can not be used when the program is opened in debugging status.</td>
<td>7.6.4.10</td>
</tr>
<tr>
<td>Edit Command line - Online</td>
<td>Edit the command lines for a program opened in debugging status.</td>
<td>7.9.3</td>
</tr>
<tr>
<td>Insert Command line - Online</td>
<td>Insert the command lines for a program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Delete Command line - Online</td>
<td>Delete the command lines for a program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Menu item</td>
<td>Explanation</td>
<td>Menu item</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Debug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set a Breakpoint</td>
<td>You can set a breakpoint in a program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Delete a Breakpoint</td>
<td>You can delete a breakpoint in a program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Delete all Breakpoints</td>
<td>You can delete all breakpoints in a program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Show the executed line always</td>
<td>You can set to display/not to display the executed line always to the program opened in debugging status.</td>
<td></td>
</tr>
<tr>
<td>Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renumber</td>
<td>The renumbering function can only be used with MELFA-BASIC IV and Movemaster commands. You can renumber line numbers in a batch.</td>
<td>7.6.4.14</td>
</tr>
<tr>
<td>Sort</td>
<td>The sorting function can only be used with MELFA-BASIC IV and Movemaster commands. This sorts the edited program by line number.</td>
<td>7.6.4.15</td>
</tr>
<tr>
<td>Syntax Check</td>
<td>You can check whether or not the edited robot program is syntactically correct.</td>
<td>7.6.4.11</td>
</tr>
<tr>
<td>Command Template</td>
<td>You can display a list of the commands and make insertions on the program command edit screen.</td>
<td>7.6.4.12</td>
</tr>
<tr>
<td>XYZ Position variable Batch edit</td>
<td>You can change the position variables in the program being edited in a batch and can sum up all the values</td>
<td>7.6.4.13</td>
</tr>
<tr>
<td>Joint Position variable Batch Edit</td>
<td>Tact time calculation can only be used in a simulation. Tact time of the program can be calculated.</td>
<td>13.12</td>
</tr>
<tr>
<td>Tact time calculation</td>
<td>You can customize the program edit area, screen display area and syntax check before saving a program</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(This can only operate when the program has been opened in debugging status.)

Renumbering and sorting can only be used with MELFA-BASIC IV and Movemaster commands.

Tact time calculation can only be used in a simulation.
7.5. Customizing the Program Edit Screen

You can customize the program edit screen.
With the program opened, on the menu bar, click [Tool] -> [Option] and set the program edit screen as you want with the displayed option screen.
Clicking the [Restore Defaults] button restores the default settings.

![Option Screen](image)

Figure 7-9 Option Screen

7.5.1. Changing the display area

In the "Display area" group, you can set the command display area and position edit area display ratios and for the position edit area, the XYZ (P) variable and joint (J) variable proportions.

![Program Edit Screen Display Area Change](image)

Figure 7-10 Program Edit Screen Display Area Change
7.5.2. Command format hints

You can use pop-up hint display to display the format for the robot program command, system functions, and system status variables displayed in the command edit area.

![Command Edit Area Command Format Hint Display Settings](image1)

Figure 7-11 Command Edit Area Command Format Hint Display Settings

7.5.3. Character colors

You can assign the colors for displaying robot program command, system functions, and system status variables displayed in the command edit area.

![Command Edit Area Character Color Settings](image2)

Figure 7-12 Command Edit Area Character Color Settings
7.5.4. Changing the font

You can change the font displayed in the command edit area. Click the option screen font [Change] button. The font setting screen is displayed, so after setting the font name, style, and size, click the [OK] button.

Figure 7-13 Command Edit Area Font Setting
7.6. Program Editing

This chapter explains the methods for editing MELFA-BASIC V programs.

For RT ToolBox2 command statement editing, you can input in the same way as with a general editor like a notebook. There is no need to input the [Enter] key for each line as was the case with RT ToolBox.

7.6.1. MELFA-BASIC V command statement editing

When writing a program using MELFA-BASIC V, you do not use line numbers, unlike MELFA-BASIC IV or Movemaster commands. Instead the step position is displayed on the left end. These step numbers are automatically displayed with the keyboard [Enter] key.

Even if you input MELFA-BASIC V commands with all lowercase characters, when the program is written to the robot controllers, the commands are converted into the correct mixture of uppercase and lowercase letters.

![Figure 7-14 MELFA-BASIC V Command Edit Screen](image)

![Figure 7-15 MELFA-BASIC V Character Input](image)
7.6.2. MELFA-BASIC IV and Movemaster command command statement editing

When writing a program using MELFA-BASIC IV or Movemaster commands, step numbers like those of MELFA-BASIC V are not displayed. Input the line number at the front of the command statement.

![MELFA-BASIC IV Command Edit screen](image)

Figure 7-16 MELFA-BASIC IV Command Edit screen

Caution

For MELFA-BASIC IV and Movemaster commands, input line numbers.

Step numbers are not displayed on the MELFA-BASIC IV and Movemaster command edit screen. When using MELFA-BASIC IV and Movemaster commands, always input line numbers. If there are no line numbers, this is a syntax error.

![Sorting](image)

Figure 7-17 Sorting

There is a function for sorting commands in order of line number even if you do not input them in order of line numbers. For details, see "7.6.15 Sorting".

There is a function for reordering commands in order of line number even if you do not input them in order of line numbers. For details, see

![Character Input](image)

Figure 7-18 MELFA-BASIC IV Character Input
7.6.3. Position variable editing

Position variables are edited on the position edit screen. The upper list is a list of XYZ coordinate variables and the lower list is a list of joint coordinate variables.

Array variables are displayed developed in their own lists.

Caution

About uppercase characters and lowercase characters in position variables names

With MELFA-BASIC V, you can use lowercase letters in variable names. This software does not differentiate between uppercase letters and lowercase letters in variable names. For example, the position variables PA and pa are recognized as the same position variables. The controller converts all later variables to match the first position variable name defined. For example, if you write a program like that below, the position variable "pa" is used and "PA" is converted into "pa".

```
1 | Mov pa
2 | Mov FA
```

When this is written to the robot controller, it is converted as on the right.
7.6.3.1. Adding/changing position variables

To add a position variable, click the [Add] button. The position variable add screen is displayed. At this time, if position data is selected in the list, the contents of that position data (XYZ/joint, position information) are displayed. However, the variable name remains blank.

To revise a position variable, select the position variable to be revised in the list, then click the [Change] button.
The selected position variable is displayed. At this time, the variable name can not be changed.

Select either XYZ coordinate type or joint coordinate type, input the values of each element of the position data, input the position variable name, then click the [OK] button.
While editing an online program in online status or simulation status, you can read the current robot position by pressing the [Read Current Position] button.

![Figure 7-21 Position Data Variables](image)
The validity of the elements is checked. For some robot models, some elements are not checked.

⚠️ **Caution**

When adding a position array variable, specify the array name and element numbers as the variable name. Also, when writing to a robot, always write the Dim declaration in a command statement. If there is no Dim declaration, an error occurs when you write to the robot controller.

⚠️ **Caution**

The units for elements used depend on the robot. See the robot's own operations manual.
7.6.3.2. Deleting position variables

After selecting the target position variable, click the [Delete] button. The selected position variable is deleted. You can also delete multiple position variables at the same time. You can select multiple position variables by clicking position variables while holding down the [Ctrl] key or the [Shift] key on the keyboard. However, you cannot select XYZ position variables and joint position variables at the same time.

Caution

To delete a position array variable, delete the command statement. "Dim" declaration.

With this software, even if a position variable is deleted, if a program with a "Dim" declaration is written to a robot controller, the position array variables declared with the "Dim" are left with 0 for all their components.

7.6.4. Edit assist functions

This explains the edit assist functions, which help in command editing.

Edit assist functions such as copy, cut, find, find and replace, and jump are used from [Edit] and [Tool] on the menu bar.

7.6.4.1. Copy

Copies a character string in the command being edited. You can also copy multiple lines. After selecting the character string to be copied, click on the menu bar [Edit] -> [Copy]. You can use the paste function, explained below, to paste this copied character string to another location in the program.

For details on position data copying, see "7.6.4.4 Copy position data".

7.6.4.2. Cut

Cuts a character string from the command being edited. You can also cut multiple lines. After selecting the character string to be cut, click on the menu bar [Edit] -> [Cut]. You can use the paste function, explained below, to paste this cut character string to another location in the program.

7.6.4.3. Paste

Pastes the copied or cut character string to the specified location. Put the cursor where you want to paste, then click on the menu bar [Edit] -> [Paste]. The copied or cut character string is inserted at the specified location.

For details on position data pasting, see "7.6.4.5 Pasting position data".

7.6.4.4. Copy position data

Copies position data. You can also copy multiple position data items. After selecting the position data to be copied, click on the menu bar [Edit] -> [Copy – Position data].
7.6.4.5. Pasting position data

This pastes the copied position data. Make active the program you want to paste into, then click on the menu bar [Edit] -> [Paste – Position data]. The copied position data is inserted into the specified program. At this time, if there is already position data with the same name in that program, a confirmation message is displayed.

![Figure 7-22 Paste Position Data Confirmation Message]

7.6.4.6. Find

This searches for the specified character string. Click the menu bar [Edit] -> [Find]. The find screen is displayed.

![Figure 7-23 Find Screen]

Input the character string to find, then click [Find Next] or [Find Previous]. The character string search starts. If you click [Display List], all the instances of the specified character string are found from programs and displayed in a list.

![Figure 7-24 Find Results List Display]

When you select an item from the find results list and click the [Jump] button, the display jumps to the line that includes the selected item.
7.6.4.7. Find in Files

This searches for the specified character string in the "Online" or "Offline" program files registered in the current project.

Click the menu bar [Edit] -> [Find in Files]. The find in files screen is displayed.

You can also display this screen by clicking the program management [Find in Files] button.

![Figure 7-25 Find in Files Screen](image)

Input the character string to find and select the location to search.

When "PC" is selected as the location to search, all the offline programs registered in the current project are searched.

When "Robot" is selected as the location to search, all the online programs registered in the current project are searched. In other words, all the programs in robot controllers in the "online" status connected to a robot are searched. If a simulation is running, all the programs in the virtual controller are searched. When you search in controllers, the communications with the controllers may take time.

![Figure 7-26 Results of Search from File](image)

With the [Open with Program edit] button, you can open the program that includes the contents of the line selected from the list of search results.
7.6.4.8. Replace

This replaces the specified character string with another character string. Click the menu bar [Edit] -> [Replace]. The Replace Screen is displayed.

![Figure 7-27 Replace Screen]

- [Find Next] : Searches for the next instance of the character string to be replaced.
- [Replace] : Replaces the found character string.
- [Replace All] : An item is displayed for specifying the range in which to replace all instances of the specified character string.

With Replace All, you can specify a range in which to replace. When you click the [Replace All] button, all the instances in the specified range are replaced.

![Figure 7-28 Replace All Setting Screen]

7.6.4.9. Jump to specified line

Jumps to the specified step number or label. Click on the menu bar [Edit] -> [Jump]. The jump screen is displayed.

![Figure 7-29 Jump Screen]

Input the step number or label to jump to, then click the [OK] button. Display jumps to the specified step number or label.
7.6.4.10. Partial writing

Writes the selected program lines to the robot controller. This is handy for reflecting the contents of the partially revised program in the robot controller, but be careful. Only the selected part of the program is written.

Select the lines to be written to the robot controller, then click on the menu bar [Edit] -> [Partial Write]. Check the contents to be written, then click [Yes].

![Figure 7-30 Partial Writing](image)

7.6.4.11. Syntax check

You can check whether or not the edited robot program is syntactically correct. Execute this before writing the program to the robot controller.

Click on the menu bar [Tool] -> [Check Syntax]. If there is a syntax error, the error location and details are displayed.

![Figure 7-31 Syntax Check Results Screen](image)

If you select the detected error and click the [Jump] button, it jumps to the command statement with the error.
7.6.4.12. Command template

You can display a list of the commands and make insertions on the program command edit screen. Click on the menu bar [Tool] -> [Command Template].

![Command Template](image)

Figure 7-32 Command Template

When you select the template for the selected command from the list, then either click the [Insert Template] button or double click, the command is inserted onto the program command edit screen.

7.6.4.13. XYZ position data batch editing/joint position data editing

You can change the position variables in the program being edited in a batch and can sum up all the values. For example, you can add 10.00 to the X components of the P00, P01, P02, P03, and P04.

To batch edit XYZ position variables, click on the menu bar [Tool] -> [Batch Edit XYZ Position Data]. To batch edit joint position variables, click on the menu bar [Tool] -> [Batch Edit Joint Position Data]. All the position variables of the respective type are displayed.

![XYZ Position Data Variable Editing](image)

Figure 7-33 XYZ Position Data Variable Editing

From the position variable list, select the position variable to change, then add it to the change list with the [->] button.

Input the change value, select the change method [Add] / [Change], then click the [OK] button. You can not set both [Add] and [Change] for the same element.

You can cancel the registration of a position variable for change with the [<-] button.
7.6.4.14. Renumbering

The renumbering function can only be used with MELFA-BASIC IV and Movemaster commands. You can renumber line numbers in a batch. You can specify the range for renumbering. With the setting dialog, you can specify the start and end lines numbers, the new starting line number, and the line number interval.

While editing a program created with MELFA-BASIC IV or Movemaster commands, click the tool bar [Tool] -> [Renumber]. The renumber set screen is displayed.

![Figure 7-34 Renumber Setting Screen](image)

Caution

Renumbering can only be used with MELFA-BASIC IV and Movemaster commands.

The renumbering function can only be used with MELFA-BASIC IV and Movemaster commands. It can not be used with standard MELFA-BASIC V.

7.6.4.15. Sorting

The sorting function can only be used with MELFA-BASIC IV and Movemaster commands. This sorts the edited program by line number. While editing a program created with MELFA-BASIC IV or Movemaster commands, click the tool bar [Tool] -> [Sort]. The confirmation message is displayed, then the line numbers are sorted in ascending order.

![Figure 7-35 Sorting](image)

Caution

Sorting can only be used with MELFA-BASIC IV and Movemaster commands.

The sorting function can only be used with MELFA-BASIC IV and Movemaster commands. It can not be used with standard MELFA-BASIC V.
7.7. Saving Programs

Always save the edited program.
There are three methods for saving: saving, saving to computer, saving to robot controller.

⚠ Caution

Do not write a program to the controller with duplicate step numbers.

Even programs with duplicate step numbers or that are still being edited and are not yet syntactically correct can be saved on the computer. However, be careful not to copy or otherwise transfer such a program to a robot controller with the program management functions.

If a program with duplicate step numbers is written to the robot controller, the duplicate step lines are written over each other.

7.7.1. Save

Saves the program being edited with its current name.
When you click on the menu bar [File] -> [Save], the program is saved, overwriting the older version of itself.

If you are editing a program on a robot controller, the "Save Items" setting screen is displayed. Set the items to write, then click the [OK] button.
For details on the "save items", see "7.7.4 Items written when saving in robot".
7.7.2. Saving on computer

Saves the program being edited to the computer. At this time, you can set a new program name. Click on the menu bar [File] -> [Save to PC].

![Figure 7-37 Saving on Computer](image)

Input the robot program name, then click the [OK] button.

Caution

Folder in which programs are stored

Programs on the computer are managed in units of workspace projects. The folder they are stored into is workspace writing folder/project name/Program. To store into any other folder, first store in this folder, then copy into the desired folder with the program management copy function.

Caution

About the program name which is disable on PC

Windows, error is occurred in the Program editing tool when opening that program. To solve this problem, it is necessary to change the program name in the robot controller. The “Reserved words” are the special words used by Windows system. Therefore, it is impossible to use these words as the file name on PC. The following words are in “Reserved words”.

AUX, COM1 to 9, CON, LPT1 to 9, NUL, PRN
7.7.3. Saving in robot controller

Saves the program being edited to the robot controller with a new name. At time, you can set a new program name.

Click on the menu bar [File] -> [Save in Robot]. The "Save Items" setting screen is displayed, so set the save items, then click the [OK] button.

For details on the "save items", see "7.7.4 Items written when saving in robot".

Figure 7-38 Saving on Robot Controller
7.7.4. Items written when saving in robot

When saving a robot program in a robot controller, write items can be set by categorizing them into instructions, position variables and program external position variables.

This function is displayed on CRn-500 series robot controllers from the H1 edition on.

This save item default values for when you have read a robot controller program are the same as the "Read Items" when you read the program. When you have created a new program or opened a program on the computer, the display becomes as in "Figure 7-39 Save Items".

![Figure 7-39 Save Items](image)

We will explain the operations for saving to a robot when only command lines or only position variables are specified, using the following example for illustration.

Example: When there are programs in program editing on the computer or in the robot controller

(1) When only command line written

![Program in the robot controller]

| 100 Mov P1 |
| 200 Mov P2 |
| 300 Mov P5 |
| 400 End |

P1=(400.000, 0.000, 100.000, , ,90.000)(4,0)

P2=(0.000, 400.000, 150.000, , , 0.000)(4,0)

P3=(-351.700, -49.369, 22.000, , , -95.168)(0,0)

P4=(276.499,-599.066, 264.966, , , 29.170)(0,0)

(2) When writing position variable only

![Program in the robot controller]

| 10 Mov P1 |
| 20 Mov P2 |
| 30 Mov P3 |
| 40 End |

P1=(400.000, 0.000, 100.000, , , 90.000)(4,0)

P2=(0.000, 400.000, 150.000, , , 0.000)(4,0)

P3=(-351.700, -49.369, 22.000, , , -95.168)(0,0)

P4=(276.500,-599.070, 264.970, , , 29.170)(0,0)

Changing only the command line

The position variables are not changed.

The command line is not changed.

The position variables on the computer are overwritten. However, position variables that are in the robot controller, not on the computer, are left as is. (Reference)
7.7.5. Setting the syntax check for before program saving

You can set whether or not to have the syntax checked when you save a program and whether or not to display a message when there are no syntax errors.

With the program opened, on the menu bar, click [Tool] -> [Option] and set with the option screen. The default setting is automatic syntax checks with no message displayed if there is no syntax error.

Figure 7-40 Settings for Syntax Check Before Saving
7.8. **Program Printing**

You can print programs you have written.

7.8.1. **Checking a print image**

You can display a print image of the program on the screen.

Make active the program you want to print, then click on the menu bar [Workspace] -> [Print Preview]. The print image for currently active program is displayed.

7.8.2. **Printing a program**

Make active the program you want to print, then click on the menu bar [Workspace] -> [Print]. The currently active program can be printed.

7.8.3. **Setting to print a program**

You can customize the pages the program is printed with.

When you click on the menu bar [File] -> [Page Setup], the page setup screen is displayed.

You can set whether or not to print the file name, print date and time, and page numbers, the space between lines and the margin sizes.

![Page Setup for Printing](Image)
7.9. Program Debugging

You can debug robot programs you have written.

⚠️ Caution

Debugging is for programs on a controller or on a virtual controller with a simulation running.

When debugging, use a program on a controller or on a virtual controller with a simulation running. You cannot debug a program stored on a computer.

7.9.1. Starting debugging

Open the robot program in debugging status. From the project tree [Online] -> [Program], select the program, then click the right mouse button. From the right mouse button menu, click [Debug Open].

The specified robot program is opened in debugging status. The execution line cursor "\[\]" is displayed at the left end of the command edit area. The line on which this execution line cursor is displayed is the line currently being executed.

The display of this execution line cursor can be switched on/off with the menu bar [Debug] -> [Display/Do not display Execution Line].
7.9.2. Executing programs step by step

Danger

With program debugging, the robot may operate at 100% speed. Watch out for the safety around the robot. Also, prepare a T/B at hand and use the robot in a status in which an emergency stop can be made at any time.

A program that has been opened in debugging status can be run step by step. Operate using the debug operation screen that is displayed at the same time the program was opened in debugging status.

![Figure 7-43 Debug Operation Screen](image)

1. **Status**
 - The controller's task slot status is displayed.

2. **OVRD**
 - This displays and sets the robot speed override.

3. **Jump**
 - You can specify the line in the program to execute.

4. **Stop**
 - You can stop the program.

5. **Step Execution**
 - This executes the specified program one line at a time. Pressing the [FORWD] button executes the command on the current execution line and advances the current execution line one line. Pressing the [BACKWD] button executes the command on the current execution line and returns the current execution line one line.

6. **Continuous Execution**
 - This executes the program continuously from the current line.

7. **Servo On/Off**
 - You can switch the robot servo On/Off.

8. **Reset**
 - You can reset the program and any errors that have occurred.

9. **Direct Execution**
 - You can execute any command without relationship to the robot program.
7.9.3. Revising programs

The command statements for a program that has been opened in debugging status cannot be edited in the command edit area. You can revise command statements from [Edit] on the menu bar. Click on the menu bar [Edit] -> [Edit Command line (Online)], [Insert Command line (Online)], and [Delete Command line (Online)]. Position variables can be edited as usual.

<table>
<thead>
<tr>
<th>Edit Command line - Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert Command line - Online</td>
</tr>
<tr>
<td>Delete Command line - Online</td>
</tr>
</tbody>
</table>

1) Edit command line
 You can edit the contents of the specified command line.
 Click the command line to be edited with the mouse, click on the menu bar [Edit] -> [Edit Command line (Online)]. The screen for editing the command line is displayed.

2) Insert command line
 You can insert a command statement at the specified line.
 Click the line at which the command statement is to be inserted with the mouse, then click on the menu bar [Edit] -> [Insert Command line (Online)]. The screen for inserting the command line is displayed.

3) Delete command line
 You can delete the specified command line.
 Click the line at the line with the command statement to be deleted with the mouse, then click on the menu bar [Edit] -> [Delete Command line (Online)]. The confirmation screen for the command line deletion is displayed.

(1) Figure 7-44 Command Line Editing (Online)

(2) Figure 7-45 Command Line Insertion (Online)

(3) Figure 7-46 Confirming Command Line Deletion
(4) Edit position variables
For details on the method for editing the position variable, "7.6.3 Position variable editing".

Caution

Be careful when changing the value of a variable.

When you change the value of a variable, the operation target position of the robot may change and result in a collision. This is particularly dangerous during robot operation, so check carefully before changing the value of a parameter.

Caution

Partial writing can not be performed while editing a program in debugging status.

7.9.4. Setting and deleting breakpoints
You can set a breakpoint in a program that has been opened in debugging status. If you set a breakpoint, when you open the program in debugging status, you can stop the program at the line while executing the Continuous execution. After stops, you can execute the program continuously.

Breakpoints can be set up to 128. Moreover, when the program is quitted, every breakpoint is deleted. There are the following two types of breakpoints.

- Permanent breakpoint : After stopping, the breakpoint keeps being set.
- One-time breakpoint : After stopping, the breakpoint is automatically deleted at the same time as stopping.

Caution

Breakpoints can only be used with MELFA-BASIC V.

(1) Set a Breakpoint
The breakpoint is set according to the following procedure.
1) Click the command line where breakpoint is set with the mouse, then click on the menu bar [Debug] -> [Set Breakpoint].
2) The breakpoint setting screen is displayed.
 Select the type of breakpoint to set, then click the [OK] button. The breakpoint is set at the specified command line.

Figure 7-47 Setting a Breakpoint
3) "●" is displayed at the left end of command lines at which breakpoints are set.

![Figure 7-48 Display of Lines with Breakpoints Set](image)

(2) Delete a Breakpoint
To delete a breakpoint, click the command line with the breakpoint to be deleted with the mouse, then click on the menu bar [Debug] -> [Delete a Breakpoint].
To delete all the breakpoints set in this program, click on the menu bar [Debug] -> [Delete All Breakpoints].

You can also perform the breakpoint setting and deleting operations with tool bar buttons.

![Figure 7-49 Setting/Deleting a Breakpoint with the Toolbar](image)

7.9.5. Ending debugging
To end debugging, close the program with the "✗" button at the top right of the edit screen for the program opened in debugging status.

![Figure 7-50 Closing a Program Opened in Debug Status](image)

At this time, if the program has been changed, a confirmation message is displayed asking if you want to save the changed contents.

![Figure 7-51 Confirmation Message for Saving the Changed Contents](image)

Here, if you select "No", the changed contents are all thrown out. To put the changed contents into effect, always select "Yes".
7.10. **Program Management**

You can copy, move, delete, compare the contents of, rename, and set protection for robot programs.

From the project tree, select the target project program, then click the right mouse button. The right button menu is displayed, so select [Manage Programs]. The manage programs screen is displayed.

![Figure 7-52 Starting Program Management](image)

Caution

All the operations of these functions are for robot programs.
7.10.1. Program list display

On the left and right lists, the lists are programs of the displayed in the robot controller and the specified folder.

① Project You can specify projects in the workspace.
② Robot You can specify a robot controller that is currently connected.
③ […] button When you select [Project], you can specify any folder on the computer.

![Figure 7-53 Program List Display]

7.10.2. Copy

The program files are copied. Copying of the entire program file or only the command statements or only the position variables is possible.

Select the transmission source program names from the list at the left, and designate the transmission destination folder on the right side. The multiple transmission source programs can be selected at the same time, but for copying with changing its name, only one program must be selected. Copying is executed when the [Copy] button is clicked on and [Setting for copy] dialog is set.

![Figure 7-54 Copy Setting Screen]
7.10.3. **Move**

The program files can be moved.

Select the transmission source program names from the list at the left, and designate the transmission destination folder on the right side. The multiple programs can be selected at the same time. Movement is executed when the [Move] button is clicked on.

7.10.4. **Delete**

The program files can be deleted.

Select the names of the programs to be deleted from the lists. The multiple programs can be selected at the same time. The programs can be selected at the both lists. Delete is executed when the [Delete] button is clicked on.

⚠️ **Caution**

That once the program files are deleted, they cannot be recovered.

7.10.5. **Rename**

A program file name is renamed.

Select the name of the only one program to be renamed from the lists. The program can be selected at the both lists. Rename is executed when the [Rename] button is clicked on and a new file name is set at the [Setup for ReName] dialog.

![Figure 7-55 Rename Screen](image)
7.10.6. Protect settings

The program files in the controller can be protected. The entire program file can be protected, or just the command statements or position variables can be protected.

You cannot move, delete, or rename a protected file. Release the protection before any of these operations.

Select the names of the programs to be protected from the lists. The multiple programs can be selected at the same time. The programs can be selected at the both lists. Protect is executed when the [Protect] button is clicked on and [Setting for protect] dialog is set.

![Figure 7-56 Protect Settings Dialog](image)

Caution

The only programs to which protect operations apply are programs in robot controllers.

7.10.7. Comparison

The program files can be compared. Comparison of only the command statements or only the position variables is possible. Select the names of the programs to be compared from the left and right lists. A dialog displaying the corresponding comparison results will appear when the [Compare] button is clicked on and [Setting for compare] dialog is set.

![Figure 7-57 Program Comparison Settings and Comparison Results](image)

When both files are the same, the result dialog displays nothing.
7.11. Program Conversion

You can convert existing robot programs written in a different program language into the currently set program language.

<table>
<thead>
<tr>
<th>No.</th>
<th>Source</th>
<th>Target</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MELFA-BASIC III</td>
<td>MELFA-BASIC IV</td>
<td>The position data is converted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If “MELFA-BASIC V” is chosen for the target, the lines No. are also converted in addition to this conversion.</td>
</tr>
<tr>
<td>2</td>
<td>MELFA-BASIC III</td>
<td>MELFA-BASIC V</td>
<td>The lines No. are converted.</td>
</tr>
<tr>
<td>3</td>
<td>MELFA-BASIC IV</td>
<td>MELFA-BASIC V</td>
<td>The lines No. are converted.</td>
</tr>
<tr>
<td>4</td>
<td>MOVEMASTER command</td>
<td>MOVEMASTER command</td>
<td>The position data is converted.</td>
</tr>
<tr>
<td></td>
<td>(CR-116/356)</td>
<td>(CRn-500/700)</td>
<td></td>
</tr>
</tbody>
</table>

There are the following two types of conversion.
For details, see "7.11.2 Line number conversion (from MELFA-BASIC IV to MELFA-BASIC V", "7.11.3 Position data conversion (from E/EN/M1/M2 series to CRn-500/700 series".

(1) Conversion of the lines No.
Convert the line No. and relevant command line, because the deal of line No. in MELFA-BASIC IV is different from MELFA-BASIC V.

(2) Conversion of the position data
Convert the format of position data and relevant command, because the configuration of the E/EN/M1/M2 series controller's position data is different from the CRn-500/700 series controller's.

![Fig 7-58 Starting Program Conversion](image)

Caution

Only programs on the computer can be converted.

Program conversion is only possible for programs on the computer. It is not possible to directly convert a program on a controller or on a virtual controller with a simulation running. To convert a program on a controller or on a virtual controller with a simulation running, first use program management to copy it onto the computer, then convert it there.

7.11.1. Starting program conversion

From the project tree, select the conversion destination project with [Offline] -> [Program], then click the right mouse button. From the right mouse button menu, click [Program Convert].

The destination is in the program language set for this project.
7.11.2. Line number conversion (from MELFA-BASIC IV to MELFA-BASIC V)

Convert the lines No. and relevant command line, because the deal of line No. in MELFA-BASIC IV is different from MELFA-BASIC V.

For the MELFA-BASIC V, convert as follows.
- The line No. is converted to the step No. (sequential No. which starts from 1).

![Diagram](image)

- The command line using line No. jump is converted to the command line using label jump.

![Diagram](image)

*LB00001 is the label name created automatically by this conversion.

Convert the program according to the following procedure.

![Diagram](image)

(1) Select the program language of the source and target for conversion.
Start program conversion with the project set with "MELFA-BASIC V"
Choose "MELFA-BASIC IV" for the source and choose "MELFA-BASIC V" for the target.
It is NOT necessary to select the axis of robot.
(2) Select the file as source.
 Click the [Select] button of the source, and select the file of MELFA-BASIC IV program.

(3) Input the name of the file to save the converted program into.

(4) After designating the conversion source file and the conversion destination file, click the [Convert] button or the [Convert & Open] button.
 When [Convert] button is clicked, the designated selected file is converted and written in the target file.
 When [Convert & Open] button is clicked, the file is converted, written in the target file and opened through at Program edit tool.
7.11.3. Position data conversion (from E/EN/M1/M2 series to CRn-500/700 series)

This function converts the format of position data and relevant command (DJ, MP and PD command of MOVEMASTER command), because the configuration of the E/EN/M1/M2 series controller’s position data is different from the CRn-500/700 series controller’s.

Note1: The program conversion converts the position data as well as the commands related to the position data. It is not possible to convert commands automatically. Be sure to make grammatical check using this software before using the program of E/EN/M1/M2 series by the CRn-500/700 series, and change the commands if necessary.

Note2: The position data of the MOVEMASTER command program for M1/M2 series has the base-coordinate rotated 90º. When using the program for M1/M2 by the CRn-500/700 series, convert M1/M2 program into EN program with the E/EN/M1/M2 series support software DOS version, before carrying out the program conversion.

Note3: In the case of the E/EN/M1/M2 series support software DOS version and E/EN series Robot programming supporter for Windows, the data can be saved separately such as command sentence only, position data only or command sentence and position data. In this program conversion, it is possible to convert the file of command sentence only and the file of position data only to one program. The other combinations occurs error. (As following case 3 to 7.)
Convert the program according to the following procedure.

Figure 7-60 Conversion from MELFA-BASIC III to MELFA-BASIC IV

1. Select the program language of the source and target for conversion. Start program conversion with a project set for "MELFA-BASIC V" or "MELFA-BASIC IV". For the source, choose "MELFA-BASIC III" or "MOVEMASTER (CR-116/356)" which is the program language of the E/EN/M1/M2 series. If "MELFA-BASIC V" is chosen for the target, the lines No. are also converted in addition to this conversion.

2. Select the axis of robot. Select the correct number of axes, so that the configuration of the E/EN/M1/M2 series controller’s position data is different depending on the number of axes.

3. Select the file(s) as source. Click the [Select] button of the source, and select the file(s) of E/EN/M1/M2 series program. When selecting the multiple files, click the file while pushing the [Ctrl] key.

4. This specifies the file to write the converted program into. Input the name of the file to save the converted program into.

5. After designating the conversion source file and the conversion destination file, click the [Convert] button or the [Convert & Open] button. When [Convert] button is clicked, the designated selected file is converted and written in the target file. When [Convert & Open] button is clicked, the file is converted, written in the target file and opened through at Program edit tool.
8. Setting Parameters

You can reference and rewrite parameter information set in a robot controller.
You can set parameters with the method of specifying parameter names and setting them or with the method
of making the settings arranged by function.

8.1. Editing from parameter list

You can reference and rewrite individual items of parameter information set in a robot controller by specifying
the name of the parameter.

8.1.1. Starting

This is used in the state with the robot controller connected.
From the project tree, double click [Online] -> [Parameter] -> [Parameter List].

At this time, a confirmation message like the following concerning the parameter list is displayed.

This window will appear in the following cases.
- When there is no parameter list information in the personal computer.
- When the parameter list used in the robot controller is newer than the parameter list already stored in the
 personal computer.
When parameter list reading is specified, the screen for selecting where to read it from is displayed.

![Select parameter list](image)

Figure 8-3 Parameter List Select Screen

Select either "Read from RC" or "Read from file", set the parameter list to be read, then click the [OK] button.

Memo

What is the parameter list?

The parameter list is a list of parameter information comprised of parameter names, explanatory text, etc. displayed on the parameter list screen. This parameter list can be downloaded from the controller. The version of the parameter list may vary with the version of the software on the controller. We recommend that you download the latest parameter list from the controller.
8.1.2. Parameter editing

Double click a parameter displayed in the list or input its name, then click the [Read] button. The specified parameter information in the robot controller is displayed.

After you change a parameter, you can rewrite the specified parameter information in the robot controller by clicking the "Write" button.

You can print the displayed parameter information by clicking the [Print] button.

⚠️ Caution

Use upper case letters when naming the programs in alphabetic characters.

Lower case alphabetic characters can be used in this parameter setting. Use upper case letters when naming the programs in alphabetic characters for the parameters of the base program (PRGUSR) or slot table (SLT*), etc. All of the program names within the robot controller will be expressed in upper case letters.

If lower case letters are used, the programs will not be properly recognized.

To put a changed parameter value into effect, switch the robot controller power Off, then On again.

To validate the rewritten parameter information in the robot controller, the robot controller power must be turned ON again.
8.1.3. Parameter list reading

If no parameter name is displayed on the parameter list screen, you can read the parameter list.

Click the parameter list [Read] button at the top right of the parameter list screen. The parameter list select screen is displayed.

Select the source to read from ("Read from RC" or "Read from file"), then set the parameter list to read and click the [OK] button.

8.1.4. Finding parameters

You can find a character string in the displayed parameter list. With the "Parameter List" screen active, click on the menu bar [Parameter] -> [Find]. The character string find screen is displayed.

Input the character string to search for, then click the [Find] button. Parameters that include the input character string are displayed.
8.2. Robot Controller Operation Modes for Parameter Writing

With CRn-500 series robot controllers, when you write parameters to the robot controller, controller software version may place restrictions on the operating mode in which you can write. For details, see below.

However, parameters cannot be written while any program with any startup condition other than Always has been started. In such a case, stop the program, then write the parameters.

<table>
<thead>
<tr>
<th>CRn-500 series robot controller</th>
<th>Operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEACH</td>
</tr>
<tr>
<td>J1 edition or later</td>
<td>○</td>
</tr>
<tr>
<td>H7 edition or earlier</td>
<td>○</td>
</tr>
</tbody>
</table>

○: Writing possible ×: Writing impossible

Table 8-1 Download Operating Modes for Writing (for CRn-500 series only)
8.3. Operating Range Parameters

Set the operating range of the robot.
Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Operating Range].
After you change the parameter value, you can rewrite the operating range parameter in the robot controller by clicking the [Write] button.

![Figure 8-7 Motion Limit Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.4. Jog Parameters

Set the speeds for joint jogging and orthogonal jogging.
Set parameters while connected to the robot controller. From the project tree, double click the target project [Online] -> [Parameter] -> [Jog].
After you change the parameter value, you can rewrite the jog parameter in the robot controller by clicking the [Write] button.

![Figure 8-8 Jog Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.5. Hand Parameters

Set the type of the hand (single solenoid/double solenoid, etc.) and work holding/non-holding when HOPEN* (open hand) and HCLOSE* (close hand) are executed.

Set parameters while connected to the robot controller.

From the project tree, double click the target project [Online] -> [Parameter] -> [Hand].

After you change the parameter value, you can rewrite the parameters concerning the hand in the robot controller by clicking the [Write] button.

You can reference explanations of displayed parameters by pressing the [Explain] button.

![Figure 8-9 Hand parameter](image)
8.6. Weight and Size Parameters

You can set the conditions for the hand mounted on the robot and the conditions for the work the robot grasps.

Set parameters while connected to the robot controller.

From the project tree, double click the target project [Online] -> [Parameter] -> [Weight and Size].

After you change the parameter value, you can rewrite the weight and size parameters in the robot controller by clicking the [Write] button.

![Weight and Size Parameters](image)

Figure 8-10 Weight and Size Parameters

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.7. Tool Parameters

Set the standard tool coordinates and standard base coordinates. Set parameters while connected to the robot controller.

From the project tree, double click the target project [Online] -> [Parameter] -> [Tool].

After you change the parameter value, you can rewrite the tool parameters in the robot controller by clicking the [Write] button.

![Figure 8-11 Tool](image)

Displayed when you are connected to a controller that supports position repair.
8.8. Slot Tables

Slot tables set the operating conditions of each task slot during multi-task operation. Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Slot Table]. After you change the parameter value, you can rewrite the operating range parameter in the robot controller by clicking the [Write] button.

![Figure 8-12 Slot Table](image)

Select the task slot number you are changing and click the [Change] button.

![Figure 8-13 Slot Table - Change](image)

When the modification window appears, set the program name, operating conditions, startup conditions and task priority, and then click [Write].

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.9. **Output Signal Reset Pattern Parameters**

These parameters set the operation when resetting the general-purpose output signals such as the CLR instruction and dedicated input (OUTRESET).

Set parameters while connected to the robot controller.

From the project tree, double click the target project [Online] -> [Parameter] -> [Output Signal Reset Pattern].

Set a signal number, and then select one of [OFF]/[ON]/[Hold]. The value of the signal having the specified number displayed in the list changes. After you changed the parameter value, you can rewrite the output signal reset parameter in the robot controller by clicking the [Write] button.

Also, selecting a signal group (for example, "32-0") and then clicking the [Select] button changes 32 signals at once.

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.10. Assigning Dedicated Input/Output Signals

Assign signal numbers to functions in order to perform the remote operations to execute and stop robot programs, and display/operate the execution progress information and servo power supply status, etc. Set parameters while connected to the robot controller.

8.10.1. General 1 Parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [General 1].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-16 Assign Dedicated Input/Output Signal General 1 Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.10.2. General 2 Parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [General 2].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-17 Assign Dedicated Input/Output Signal General 2 Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.10.3. Data parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Data].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-18 Assign Dedicated Input/Output Signal Data Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.10.4. Jog parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Jog].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-19 Assign Dedicated Input/Output Signal Jog Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

JOGNER (JOG command INPUT signal, During JOG OUTPUT signal) can be used with Version J2 or later of the CRn-500 series controller, or CRn-700 series controller.
8.10.5. Hand parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Hand].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-20 Assign Dedicated Input/Output Signal Hand Parameters]

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.10.6. Warm-up operation parameters

The warm-up operation parameters can be set when you are connected to a CRn-500 series robot controller of JB edition or later or a CRn-700 series robot controller.

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Warm up].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-21 Assign Dedicated Input/Output Signal Warm-Up Operation Parameters]

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.10.7. Slot start (each slots) parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Start Slot].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.10.8. Slot stop (each slots) parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Stop Slot].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.10.9. Servo On/Off (each robot) parameter

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Servo On/Off].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-24 Assign Dedicated Input/Output Signal Servo Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.10.10. Machine lock (each robot) parameters

From the project tree, double click the target project [Online] -> [Parameter] -> [Assign dedicated input/output signal] -> [Machine lock].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-25 Assign Dedicated Input/Output Signal Machine Lock Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.11. RS-232 Setup Parameters

These parameters set up the communication environment of the RS-232 interface of the robot controller. Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Communication]. After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-26 RS-232](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.12. Zone Parameters

You can specify the region (cuboid) defined with two points in the robot XYZ coordinates and set the behavior for when the robot enters this region. You can set up to 8 zones.

Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Zone]. After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-27 Zone Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.13. Free Plane Limit Parameters

You can set the overrun limit for using the robot on a free plane.
Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Free Plane Limit].
After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the
[Write] button.

![Figure 8-28 Free plane limit parameter](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

8.14. Escape Point Parameters

Set the position of the escape point.
Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Escape Point].
After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the
[Write] button.

![Figure 8-29 Home Position Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.15. Robot Program Language Parameters

You can set the robot program language used in a robot controller (MELFA-BASIC V/MELFA-BASIC IV/Movemaster commands). From the project tree, double click the target project [Online] -> [Parameter] -> [Robot Language].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-30 Program Language Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.

For the usable robot program languages, see "Table 6-1 Robot Program Languages for Each Controller".

Caution

About MELFA-BASIC V

MELFA-BASIC V can only be used with CRn-700 series robot controllers.

About Movemaster commands

The Movemaster commands are restricted by the robot models that can be used. For details on whether you can use Movemaster commands with your robot, refer to its standard specifications.
8.16. Additional Axis Parameters

You can set information related to additional axes of robots. Set parameters while connected to the robot controller. From the project tree, double click the target project [Online] -> [Parameter] -> [Additional Axis]. After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

Motion Limit parameter screen starts with the [Motion Limit] button. You can reference explanations of displayed parameters by pressing the [Explain] button. You can read Additional Axis data saved in the file by pressing the [Read from file] button. You can save Additional Axis parameter to the file by pressing the [Save to file] button. But Motion Limit parameter is not included in the file saved by pressing the [Save to file] button. ([Motion Limit] button, [Read from file] button, and [Save to file] button correspond with RT ToolBox2 Ver.1.1 or later.)

Select the additional axis information to be edited and double click. The screen for setting information for the additional axis is displayed.
8.17. Collision Detection Parameters

You can set information related to the robot's collision detection functions. Set parameters while connected to the robot controller. From the project tree, double click the target project [Online] -> [Parameter] -> [Collision Detection]. After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Collision Detection Parameters]

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.18. Warm-Up Operation Parameters

You can set information related to the robot's warm-up function.
Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Warm-Up].
After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

Figure 8-34 Warm-Up Operation Parameters

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.19. Movement Parameters

You can set information related to the optimum acceleration/deceleration for robot operation and set compliance errors.

The information that can be set concerning movement parameters depends on the robot controller connected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CRn-700 series</th>
<th>CRn-500 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum acceleration/deceleration correction ratio</td>
<td>J2 edition or later</td>
<td>H6 edition or later</td>
</tr>
<tr>
<td>Compliance error function settings</td>
<td>Can be used with all versions</td>
<td>G1 edition or later</td>
</tr>
<tr>
<td>Optimum acceleration/deceleration setting</td>
<td>H4 edition or later</td>
<td></td>
</tr>
<tr>
<td>Direction of gravity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set parameters while connected to the robot controller.

From the project tree, double click [Online] -> [Parameter] -> [Movement Parameters].

After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.20. **Program Parameters**

You can set parameters related to robot programs.
Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Program Parameters].
After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-36 Program Parameters](image)

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.21. User Error Parameters

You can set the message, cause, and recovery method for user errors set with a program. Set parameters while connected to the robot controller. From the project tree, double click the target project [Online] -> [Parameter] -> [User Error].

![Figure 8-37 User Error Parameters](image1)

Double click the error number from the list. The "User Error" edit screen is displayed.

![Figure 8-38 User Error Edit](image2)

Input the error number, error message, cause, and recovery method, then click the [OK] button. The user errors input to the list are displayed.

At this time, input an error number from "9000" to "9200".

After you confirm the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

Please note that the list display is not sorted by error number.

You can reference explanations of displayed parameters by pressing the [Explain] button.
8.22. Ethernet Settings

You can set robot controller Ethernet information. Set parameters while connected to the robot controller.
From the project tree, double click the target project [Online] -> [Parameter] -> [Ethernet Settings].
After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-39 Ethernet Settings]

You can reference explanations of displayed parameters by pressing the [Explain] button.

Select the device to edit and double click. A screen is displayed for setting a variety of device information.

![Figure 8-40 Device Setting]

If you check the [Change the Parameter to connect Vision] checkbox, the items from "Port" downward take on the values for a network vision sensor.

⚠️ Caution

Using a CRn-500 series robot controller

When using Ethernet with a CRn-500 series robot controller, the "Ethernet interface" option is required.
8.23. Multiple CPU Settings

You can set the parameters related to the Multiple CPU to use the CRnQ-700 series robot controller. These parameters can be set when you are connected to CRnQ-700 series robot controller. This function is available from RT ToolBox2 Ver.1.1 or later.

Set parameters while connected to the robot controller. From the project tree, double click the target project [Online] → [Parameter] → [Multiple CPU setting]. After you change the parameter value, you can rewrite the parameters in the robot controller by clicking the [Write] button.

![Figure 8-41 Multiple CPU Setting](image)

You can reference explanations of displayed parameters by pressing the [Explain] button. You can check the number of points input and range of total by pressing the [Check] button.

Please refer to the manual of Universal model QCPU (QCPU User’s Manual (Multiple CPU System)) for details of Multiple CPU setting.
8.24. Parameter printing

You can print the parameter values held in a robot controller.

Display the parameters to print, then click on the menu bar [Workspace] -> [Print]. The print screen is displayed, so check the printer, then click the [OK] button. Printing starts.

Also, you can click on the menu bar [Workspace] -> [Print Preview] to look at the print image.

![Figure 8-42 Parameter Printing](image)

Caution

Install the printer beforehand.

Install the printer beforehand. For details on the installation method for the printer, refer to the operations manuals for your printer and computer.
9. Status Monitoring

You can set various information in the currently connected robot controllers to be constantly displayed. The monitor functions are roughly divided into the following three.

1. Robot movement monitor Items related to robot movement are monitored.
2. Operation monitor Items related to the robot's operation are monitored.
3. Servo monitor The robot's servo system information is monitored.

<p>| Table 9-1 Summary of Each Monitor |</p>
<table>
<thead>
<tr>
<th>Monitor name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot run state</td>
<td>The operation state of each slot can be confirmed.</td>
</tr>
<tr>
<td>Program monitor</td>
<td>The program execution line set for each slot, the contents of the variable used in the program, and the robot current position, etc., can be confirmed.</td>
</tr>
<tr>
<td>Movement State</td>
<td>The current position information and hand open/close state of each connected mechanism can be confirmed.</td>
</tr>
<tr>
<td>Error</td>
<td>The currently occurring error can be confirmed. The history of the errors that have occurred can be confirmed.</td>
</tr>
<tr>
<td>Robot status</td>
<td>You can display the robot and its movements in 3D to check them.</td>
</tr>
<tr>
<td>General signals</td>
<td>You can check the statuses of signals input to the robot controller from outside equipment and signals output from the robot controller to outside equipment. Pseudo-input and forced output of signals are also possible.</td>
</tr>
<tr>
<td>Named signal</td>
<td>The status can be checked by naming the status of the dedicated I/O signal that has been set in the robot controller, as well as each bit or within the range of 32 bits of the general-purpose signal. The signals are set via parameter setting (maintenance tool).</td>
</tr>
<tr>
<td>Stop signal</td>
<td>The stop signal input into the robot controller can be confirmed.</td>
</tr>
<tr>
<td>Registers (CC-Link)</td>
<td>You can monitor the input registers and output registers for the CC-Link functions. Pseudo-input and forced output of registers are also possible.</td>
</tr>
<tr>
<td>Operating time</td>
<td>The robot operation time (power ON, etc.) can be confirmed.</td>
</tr>
<tr>
<td>Production information</td>
<td>The operating time of the program in the robot controller and the No. of program cycles can be confirmed.</td>
</tr>
</tbody>
</table>
9.1. Robot Operation Monitoring

9.1.1. Slot operation status monitoring

The state of the slots in the robot controller can be monitored. From the project tree, double click the target project [Online] -> [Monitor] -> [Movement Monitor] -> [Slot Status].

![Figure 9-1 Slot Run Status]

The No. of displayed slots is determined with the parameters.
9.1.2. Program monitoring

Information on the running program can be monitored. From the project tree, click the target project [Online] -> [Monitor] -> [Movement Monitor] -> [Program Monitor], then double click the "Task slot" to monitor.

Figure 9-2 Program monitor

1) Program information
 You can check the currently selected program name and operation status and the name of the currently connected robot model.

2) Program
 The currently selected program is displayed. The currently executing line is displayed inverted.

3) Variable monitor:
 You can check the names of variables being used in the selected program. You can select the variables to monitor with the buttons displayed at the bottom of the screen.
(4) Adding variables
This adds more variables to monitor.

![Figure 9-3 Add Variables](image)

Input the variable name or select it from the dropdown menu, set the variable type, then click the [OK] button.
The variables being used in the program are displayed in a dropdown list. When you select variables from the dropdown list, the variable type is automatically selected.

(5) Selecting variables
You can batch select variables to monitor from the variable list used in the program.

![Figure 9-4 Variable Selection](image)

The "variables not to display" are displayed in the list on the left side and the "variables to display" are displayed in the list on the right side. From the "variables not to display" list, select the variables to monitor, then click the [Add->] button. The selected variables are added to the "variables to display" list. If you select variables from the "variables to display" list, then click the [<Delete] button, the selected variables are deleted from the "variables to display" list and added to the "variables not to display" list.

When you click the [OK] button, the variables registered in the "variables to display" list are displayed on the variables monitor and you can reference their values.

(6) Deleting variables
This deletes variables registered on the variables monitor from the monitor list. This operation does not delete the variables themselves from the program.
(7) Changing variables
You can change the values of variables registered on the variables monitor.
On the variables monitor, select the variables to change the values, then click the [Change] button.

After confirming the variable name, input the value of the variable, then click the [OK] button.

⚠️ Caution

Be careful when changing the value of a variable.

When you change the value of a variable, the operation target position of the robot may change and result in a collision. This is particularly dangerous during robot operation, so check carefully before changing the value of a parameter.

(8) Load
You can load variables to be monitored on the variables monitor from a file.
When you click the [Load] button, you can load variable names and variable types and add them as variables to be monitored.

(9) Save
You can save as a file a list of the variables being monitored on the variables monitor.
When you click the [Save] button, you can save the names, types, and values of the variables currently being monitored into a file. This file is saved in text format.
(10) View

You can switch the values of the variables displayed on the variables monitor between hexadecimal display and decimal display.

The variables that can be displayed in hexadecimal, see below.

<table>
<thead>
<tr>
<th>Integer</th>
<th>The displayed variable can be switched to the hexadecimal number / the decimal number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float</td>
<td>When it is 0 below the decimal point, it is possible to switch to the hexadecimal number / the decimal number. However, the value is the one within the range of -9999999 - 9999999.</td>
</tr>
<tr>
<td>String</td>
<td>The hexadecimal number is not displayed.</td>
</tr>
<tr>
<td>Location</td>
<td>The hexadecimal number is not displayed.</td>
</tr>
</tbody>
</table>

As for the value displayed by the hexadecimal number, “&H” is added to the head of the value.

9.1.3. Movement status

You can check the robot current position, destination position, hand open/close status, etc.

* Destination position corresponds with RT ToolBox2 Ver1.1 or later.

From the project tree, double click the target project [Online] -> [Monitor] -> [Movement Monitor] -> [Movement Status].

Figure 9-6 Movement Status
9.1.4. Errors

The errors currently occurring in the robot controller are displayed.

9.1.4.1. Referencing the current error

From the project tree, double click the target project [Online] -> [Monitor] -> [Movement Monitor] -> [Error].

Figure 9-7 Error Screen

[Details] You can check details (cause and recovery method) on errors.
[History] You can reference the history of errors that have occurred.

9.1.4.2. Details

You can check details (cause and recovery method) on errors. On the error screen, select an error, then either click the "Details" button or double click the error.

Figure 9-8 Error Details Screen

Click or double click the [Details] button.
9.1.4.3. History information

The history of errors that have occurred in the past can be referred to. You can check the error history in the robot controller for each error level (high level, low level, caution). You can also save the error history into a file.

Click the [History] button. After selecting the level to reference, click the [OK] button.

This display is not constantly displayed. To refresh information, click the [Refresh] button.

(1) Display switching
This redisplays the displayed error history for each error level.

(2) Details
After selecting a displayed error, you can check the cause and recovery method for the error by clicking this button. You can also check details by double checking a displayed error.

(3) Save
This saves the displayed error history information into a file. For the saved error history information, select "From history file" with "Figure 9-9". Refer to "Figure 9-11" on the screen, after you selected "From history file". The error file is saved in text format. You can also print it with Notepad or other general text editors.

(4) Refresh
This refreshes the displayed information. The error history screen is not a self refreshing display monitor, so even if an error occurs after the error history screen is displayed, it is not automatically added to the display. Click the [Refresh] button.
9.1.5. Robotic status

You can display the robot and its movements in 3D to check them.

From the project tree, either double click the target project [Online] -> [Robot model name] or select [3D Monitor] with the mouse right button menu. The robot 3D display screen is displayed. If the "display travel table setting" is made for the project, the travel table is also displayed.

You can change the robot view perspective with mouse operation.

<table>
<thead>
<tr>
<th>Perspective to change</th>
<th>Graphic mouse operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspective rotation</td>
<td>While clicking the left button, move left/right → Rotation around Z axis Move up/down → Rotation around X axis Move left/right while clicking the left + right buttons → Rotation around Y axis</td>
</tr>
<tr>
<td>Perspective movement</td>
<td>Move up/down/leftright while clicking the right button</td>
</tr>
<tr>
<td>Graphic enlargement/reduction</td>
<td>Move up/down/leftright while clicking pressing [Shift] key and clicking the left button</td>
</tr>
</tbody>
</table>
9.2. Signal Monitoring

9.2.1. General signal

You can check the statuses of signals input to the robot controller from outside equipment and signals output from the robot controller to outside equipment.

From the project tree, double click the target project [Online] -> [Monitor] -> [Signal Monitor] -> [General Signals].

The upper level displays the status of input signals and the lower level displays the status of output signals. A continuous range of signals to display can be set freely with [Monitor Settings]. Pseudo-input and forced output of registers are also possible.

![Figure 9-13 General Signals](image)

9.2.1.1. Monitor settings

For the displayed signals, the continuous range can be set freely.

Set the lead numbers for the input signal number and output signal numbers to display, set their respective display ranges on the line, then click the [OK] button.

![Figure 9-14 General Signal Monitor Settings](image)
9.2.1.2. Pseudo-input

Pseudo-input means signals that are input to the robot controller from the computer, not from outside equipment.

Click the [Pseudo-Input] button. A screen for inputting pseudo signals is displayed.

⚠️ Caution

While the robot controller is in pseudo-input mode, signal input from outside devices is not accepted.

To use pseudo-input, put the robot controller into pseudo-input mode. While the robot controller is in pseudo-input mode, the robot controller does not accept signal input from outside devices.

Click the [Pseudo-Input] button. The confirmation message below is displayed before the robot controller goes into pseudo-input mode.

To release a robot controller from pseudo-input mode, switch the power for the robot controller Off, then On again.

1. First, read the signals you want to pseudo input.
 You can set 32 signals at the same time. Input the head number for the signals you want to read, then click the [Set] button.
2. The input statuses of the 32 signals starting from the specified head signal number are displayed. Set the pseudo-input status, then click the [Bit Pseudo-INPUT] button.
3. You can specify the hexadecimal values and make pseudo input for the 32 signals starting from the head signal number.
 Input the values in hexadecimal, then click the [Port Pseudo-INPUT] button.
9.2.1.3. Forced output

You can force signals to outside equipment from robot controllers. Click the [Forced Output] button. A screen for forcibly outputting signals is displayed.

![Figure 9-16 Forced Signal Output](image)

1. First, read the signals you want to forcibly output.
 You can output 32 signals at the same time. Input the head number for the signals you want to read, then click the [Set] button.
2. The output statuses of the 32 signals started from the specified head signal number are displayed. Set the output status, then click the [Bit Forced OUTPUT] button.
3. You can specify the hexadecimal value and force output for the 32 signals starting from the head signal number.
 Input the values in hexadecimal, then click [Port Forced OUTPUT] button.

Caution

Forced signal output

- Signal numbers assigned (used) as dedicated output signals cannot be forcibly output.
- Forced output is possible if the robot controller mode is either [AUTOMATIC] or [MANUAL] (for a CRn-500 series robot controller, [TEACH], [AUTO (OP)], OR [AUTO (EXT.)]), but if even one program is running, forced output is not possible. (Except an ALWAYS program)
9.2.2. Named signals

You can give names to general input/output signals and check their statuses.

With "Named signals", you can check the status of dedicated input/output signals and named general input/output signals. When starting up, you can load a definition file for named signals in the robot controller.

From the project tree, double click the target project [Online] -> [Monitor] -> [Signal Monitor] -> [Named Signals].

Figure 9-17 Named Signal

- **[Add]**: This registers a new general input/output signal name.
- **[Edit]**: This changes the setting for an existing general input/output signal selected in the list.
- **[Delete]**: This deletes a signal selected in the list.
- **[Load]**: This loads a file defining saved named signals in the robot controller and in the computer.
- **[Save]**: This saves the information on the set named signals to the robot controller or computer.
- **[Delete signal file in robot]**: This deletes the named signal information in the robot controller.

9.2.2.1. Adding new named signal or revising one

To add a new named signal, click the [Add] button. To revise one, select the signal to be revised from the list and click the [Edit] button.

Figure 9-18 Signal Name Editing

Input the general signal numbers and names, select the signal type and display method, then when adding a new named signal, click the [Add] button. The set signal is added to the list.

The [Add] and [Change] buttons do not close the "Signal name edit" screen, so you can continue to add more signals.
9.2.2.2. Deleting a named signal

Select the signals to delete from the list. You can select multiple signals by clicking them while holding down the [Ctrl] key or the [Shift] key on the keyboard.

However, dedicated input/output signals cannot be deleted.

Also, you can not delete input signals and output signals at the same time. Finally, delete the select signals in the list with a mouse click.

9.2.2.3. Named signal definition information reading

When you click the [Load] button, a message asking you to confirm that you want to delete a registered general input/output signal is displayed.

This message asks you to confirm that you want to clear the current general input/output signal display.

If you select [Yes] on this confirmation screen, the "Select locate" screen asking you to select the load source is displayed.

Select the device to load from, then click the [OK] button.

If you select the local device, the screen for selecting a file in the computer is displayed.

If you select the robot controller, the named signal definition file is loaded from the robot controller.

9.2.2.4. Saving definition information for named signals to a controller

When you click the [Save] button, the "Select locate" screen asking you to select the save destination is displayed.

Select the device to save to, then click the [OK] button.

If you select the local device, the screen for selecting a file in the computer is displayed.

If you select the robot controller, the named signal definition file is saved to the robot controller.
9.2.3. Stop signal

You can reference the statuses of stop signals (stop/not stop) input to the robot controller. From the project tree, double click the target project [Online] -> [Monitor] -> [Signal Monitor] -> [Stop Signals].

Figure 9-22 Stop Signal
9.2.4. Register (CC-Link) monitoring

You can check the statuses of registers input to the robot controller from outside equipment and registers output from the robot controller to outside equipment.

From the project tree, double click the target project [Online] -> [Monitor] -> [Signal Monitor] -> [Register (CC-Link)].

The left side of the screen displays the status of input registers and the right side displays the status of output registers.

A continuous range of registers to display can be set freely with [Monitor Settings]. Pseudo-input and forced output of registers are also possible.

This can only be used if the CC-Link option card is mounted in the robot controller.

This function can only be used with a CRn-500 series or CRnD-700 series robot controller with the CC-Link option card mounted. Also, this function cannot be used with CRnQ-700 series robot controllers.

9.2.4.1. Monitor settings

A continuous range of registers to display can be set freely.

Set the lead numbers for the input register number and output register numbers to display, set their respective display ranges on the line, then click the [OK] button.
9.2.4.2. Pseudo-input monitoring: Pseudo-input

Pseudo-input means registers that are input to the robot controller from the computer, not from outside equipment.
Click the [Pseudo-Input] button. A screen for inputting pseudo signals is displayed.

⚠️ Caution

While the robot controller is in pseudo-input mode, register input from outside devices is not accepted.

To use pseudo-input, put the robot controller into pseudo-input mode. While the robot controller is in pseudo-input mode, the robot controller does not accept register input from outside devices.
Click the [Pseudo-Input] button. The confirmation message below is displayed before the robot controller goes into pseudo-input mode.

To release a robot controller from pseudo-input mode, switch the power for the robot controller Off, then On again.

① Read the signal you want to pseudo input.
You can set 16 registers at the same time. Input the head number for the signals you want to read, then click the [Set] button. The input statuses of the 16 registers starting from the specified head signal number are displayed.
② Set the pseudo-input status, then click the [Input] button. The set register values are pseudo input to the robot controller.
③ You can display and make pseudo input in hexadecimal for register values. If you have selected [Hex], input values as hexadecimals.

When you click the [Refresh] button, the latest register information is displayed.
9.2.4.3. Forced Output

You can forcibly output register values to outside equipment from robot controllers.
Click the [Forced Output] button. A screen for forcibly outputting registers is displayed.

![Figure 9-26 Forced Signal Output](image)

1. First, read the registers you want to forcibly output.
 You can output 16 registers at the same time. Input the head number for the registers you want to forcibly output, then click the [Set] button. The output statuses of the 16 registers starting from the specified head register number are displayed.
2. Set the output status, then click the [OUTPUT] button. The specified register values are forcibly output from the robot controller.
3. You can also display and forcibly output register values in hexadecimal. If you have selected [Hex], input values as hexadecimals.

When you click the [Refresh] button, the latest register information is displayed.

Caution

Forced register output

Forced output is possible if the robot controller mode is either [AUTOMATIC] or [MANUAL] (for a CRn-500 series robot controller, [TEACH], [AUTO (OP)], OR [AUTO (EXT.)]), but if even one program is running, forced output is not possible. (Except an ALWAYS program)
9.3. Production Condition Monitoring

9.3.1. Operation hours

You can check the robot work time, battery usage time, etc. From the project tree, double click the target project [Online] → [Monitor] → [Operation Monitor] → [Operation Time].

![Figure 9-27 Operating Hours](image)

You can initialize the battery remaining time with [Maintenance] → [Initialize]. For details on operation methods, see "10.2.4 Initializing the battery remaining time".

9.3.2. Production information

You can check the latest tact time, run time, cycle count, and average tact time for each program in the robot controller. The latest tact time, run time, and average tact time can be measured up to 1193 hours (about 49 days).

From the project tree, double click the target project [Online] → [Monitor] → [Operation Monitor] → [Production Information].

![Figure 9-28 Production Information](image)

The production information is not constantly updated. Click the [Refresh] button as necessary.
10. Maintenance

With maintenance, you can maintain the robot in various ways, including setting origin data and initializing various information.

10.1. Setting Origin Data

You can save robot origin data to a file, edit it, and transfer it to a robot controller.

Set origin data while connected to the robot controller.

From the project tree, double click the target project [Online] → [Maintenance] → [Origin Data].

![Figure 10-1 Starting up the Origin Data Setting Screen](image)

Caution

About controller modes in which origin data can be read/written

The controller modes (TEACH/AUTO (Op.)/AUTO (Ext.)) in which origin data can be read/written depend on the CRn-500 series robot controller version. For details, see "Table 10-1 Origin Data Reading Robot Control Operation Mode" and "Table 10-2 Origin Data Writing Robot Control Operation Mode".

![Figure 10-2 Origin Data Screen](image)

About robot controller run modes when origin data is read/written

With CRn-500 series robot controllers, when robot origin data is read/written using this software, there are restrictions on the controller run mode according to the robot controller software version. Reference the table below.
(1) Reading

Table 10-1 Origin Data Reading Robot Control Operation Mode

<table>
<thead>
<tr>
<th>CRn-500 series robot controller</th>
<th>Operating mode</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEACH</td>
<td>Auto (OP)</td>
<td>Auto (Ext)</td>
</tr>
<tr>
<td>J1 edition or later</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>H7 edition or earlier</td>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
</tbody>
</table>

○: Reading possible, ×: Reading not possible

(2) Writing

Table 10-2 Origin Data Writing Robot Control Operation Mode

<table>
<thead>
<tr>
<th>CRn-500 series robot controller</th>
<th>Operating mode</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEACH</td>
<td>Auto (OP)</td>
<td>Auto (Ext)</td>
</tr>
<tr>
<td>J1 edition or later</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>G9 edition – H7 edition</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>G8 edition or earlier</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

○: Writing possible, ×: Writing not possible
10.1.1. Origin data input technique

You can save robot origin data to a file, edit it, and transfer it to a robot controller. Click the origin data screen "origin data input technique" to display the screen.

![Origin Data Input Technique Screen](image)

[Write] : Writes the origin data displayed on the screen to the robot controller.
[Save to file] : The displayed origin data can be saved to a file.
[Read from a file] : Stored origin data can be read from a file and displayed on the screen.
[Refresh] : Reads the origin data from a robot controller and displays the latest status.

⚠️ **Caution**

Input the correct values for the J7 and J8 origin data.

For the J1-J6 axis origin data, the compatibility of values in the robot controller are checked but the J7 and J8 origin data are not checked. Always input correct values.

The J7 and J8 axis origin data is only displayed when there is a supported additional axis.

🔍 **Memo**

About DJNT (origin error) parameters

DJNT shows the origin position error. When revising the origin position using the position repair tool, the value is set in DJNT. (When not revising the origin position using the position repair tool, all the elements become 0. However, for RV-4A, the values are entered beforehand.)

DJNT is not released to general customers, so the values cannot be directly changed.

About DJNT parameter display

Sometimes DJNT parameters are not displayed for certain robots (for example, robots that do not support the position repair function).
10.1.2. Mechanical stopper technique

This uses the robot mechanical stoppers to set the robot origin. Click the origin data screen [Mechanical stopper] button to display the screen.

After moving the robot to a mechanical stopper origin position, select the axis to set the origin for with the checkbox, then click the [Set origin] button. "Last" displays the origin setting technique used the previous time. For some robot controller software versions, this is sometimes not displayed.

![Figure 10-4 Origin Setting (Mechanical Stopper) Screen](image1)

10.1.3. Tool technique

This uses the origin setting tool to set the robot origin. Click the origin data screen [Tool] button to display the screen.

After moving the robot to the tool origin position, select the axis to set the origin for with the checkbox, then click the [Set origin] button. "Last" displays the origin setting technique used the previous time. For some robot controller software versions, this is sometimes not displayed.

![Figure 10-5 Origin Setting (Tool Technique)](image2)
10.1.4. ABS origin technique

This uses the robot's ABS origin position robot to set the robot origin.
Click the origin data screen [ABS] button to display the screen.

After moving the robot to the ABS origin position, select the axis to set the origin for with the checkbox, then click the [Set origin] button.
"Last" displays the origin setting technique used the previous time. For some robot controller software versions, this is sometimes not displayed.

![Figure 10-6 Origin Setting (ABS Origin Technique) Screen]

10.1.5. User Origin Technique

This uses the robot user origin to set the robot origin.
Click the origin data screen [User origin method] button to display the screen.

After moving the robot to the user origin position, use the checkbox to select the axis to set the origin of, then click the [Set origin] button.
"Last" displays the origin setting technique used the previous time. For some robot controller software versions, this is sometimes not displayed.

![Figure 10-7 Origin Setting (User Origin Technique) Screen]
10.1.6. Origin Parameter Backup

You can back up the parameters that make up the origin data. Also, you can transfer the backed-up data to a robot controller.

Click the origin data screen [Backup origin parameter] button to display the screen.

![Robot Origin Parameter Backup Screen]

- **[Save to file]**: This saves origin parameters read from a robot controller (displayed parameters) to a file.
- **[Select file for writing to robot]**: Transfer origin parameters stored in a file to a robot controller. When transferring to a CRn-500 series robot controller with edition H7 or earlier, set "Teach" mode.
10.2. **Initialization**

This initializes information in a robot controller. Here, you can initialize the following information in a robot controller.

1. Set the robot controller clock
2. Initialize all programs in the robot controller
3. Initialize the remaining battery time in the robot controller
4. Check the serial number in the robot controller and set the serial number for the connected robot

 (Serial number checking and setting can only be used with CRn-700 series robot controllers.)

10.2.1. Starting

Use the initialization function while connected to the robot controller.

From the project tree, double click the target project [Maintenance] → [Initialize].

![Figure 10-9 Starting Initialization Screen](image)

10.2.2. Setting the time in the robot controller

You can set the robot controller clock.

On the initialization screen, click the [Set time] button.

![Figure 10-10 Time Setting Screen](image)

Set the new date and time, then click the [OK] button.

You can set the current date and time from your computer by clicking the [Get PC time] button.
10.2.3. Deletion of all robot programs

This deletes all the programs in the robot controller. On the initialization screen, click the program group [Initialize] button. A confirmation screen is displayed, so input "Yes", then click the [OK] button.

![Figure 10-11 Confirmation Screen for Program File Initialization](image)

10.2.4. Initializing the battery remaining time

This initializes the remaining battery time in the robot controller. On the initialization screen, click the remaining battery time [Initialize] button. A confirmation screen is displayed, so input "Yes", then click the [OK] button.

![Figure 10-12 Confirmation Screen for Battery Time Remaining](image)

Caution

Do not initialize unless the battery has been replaced.

Be careful. If you initialize the remaining battery time other than when the battery is replaced, it becomes impossible to reference a correct reading for the remaining battery time.

10.2.5. Serial number

This checks the serial number in the robot controller and sets the serial number for the connected robot. On the initialization screen, click the serial number group [Set] button.

This function can only be used with CRn-700 series robot controllers. The first time you start up a CRn-700 robot controller after purchase, the C0150 warning (robot main unit serial number not set) is generated. On this screen, set the robot main unit serial number.

![Figure 10-13 Serial Number Input Screen](image)
10.3. Maintenance Forecasting

With "Maintenance forecasting", you can reference the parts replacement timing (greasing and battery and belt replacement) from operation data collected up till now in the robot controller.

Caution

The results of calculations in Maintenance Forecast merely show reference values. Please execute the daily inspection and the periodic inspection to prevent the breakdown beforehand, and to secure safety.

10.3.1. Specifications

With CRn-500 series robot controllers, there are restrictions on the maintenance forecast functions according to robot models and versions supported. The robot controller software versions and models supported by the maintenance forecast function are as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Robot</th>
<th>CRn-700 series Robot controller</th>
<th>CRn-500 series Robot controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RV-6S series RV-12S series</td>
<td>The supported models are not restricted</td>
<td>Ver. J2 or later</td>
</tr>
<tr>
<td>2</td>
<td>RV-3S series RV-3SJ series</td>
<td></td>
<td>Ver. K1 or later</td>
</tr>
<tr>
<td>3</td>
<td>RH-6SH series RH-12SH series RH-18SH series</td>
<td>The supported models are not restricted</td>
<td>Ver. K4 or later</td>
</tr>
</tbody>
</table>

10.3.2. Starting

Use the maintenance forecast function while connected to the robot controller. From the project tree, double click the target project [Online] → [Maintenance] → [Maintenance Forecast].

![Figure 10-14 Starting Maintenance Forecasting](image-url)
10.3.3. Forecasting

You can reference the "time until battery replacement", "time until regreasing, and time until belt replacement".

<table>
<thead>
<tr>
<th>(1) Battery</th>
<th>(2) Grease</th>
<th>(3) Belt</th>
<th>(4) Display units</th>
</tr>
</thead>
</table>

![Figure 10-15 Forecast Screen]

By clicking the [Refresh] button, you can reacquire information on maintenance from the robot controller.

(1) Battery
If the number of remaining hours of battery life has reached

\[(\text{Remainder time}) < [\text{The remainder days until presumed maintenance time} \times (24 - \text{Operation time of a day})]\]

the hours and bar graphs are displayed in orange.
(The battery replacement time is calculated during the time when the controller’s power is not on.)

(2) Grease
If the hours until replenishment time has reached

\[(\text{Hours until replenishment time}) < ([\text{The remainder days until presumed maintenance time}] \times [\text{Operation time of a day}])\]

the hours and bar graphs are displayed in orange.

(3) Belt
If the hours until belt replacement time has reached

\[(\text{Hours until belt replacement time}) < ([\text{The remainder days until presumed maintenance time}] \times [\text{Operation time of a day}])\]

the hours and bar graphs are displayed in orange.

(4) Display unit
You can switch the display units for "Grease" and "Belts" between hours and days. When days are selected as the display unit, the number of days of operation is calculated from the number of operating hours per day and that number of days is displayed.
10.3.4. Settings

Here, you can set the timing for collecting information concerning maintenance forecasts, the notification method, etc.

![Figure 10-16 Setup](image)

When the [Write parameters] button is clicked after setting each item, the setting values are written into the controller. All items other than the signal numbers of dedicated outputs take effect after they are written into the controller. If a dedicated output signal has been changed, it is necessary to power on the controller again.

For details on the setting items, see "Table 10-4 Description of the Setup Screen".

Caution

Information needed to “Maintenance Forecast” is not accumulated while the Maintenance forecast is being invalidly set.

Factory preset value is invalidity. When the Maintenance Forecast is invalidated, information of Maintenance Forecast is not accumulated. When switched effectively from invalidity again, the reservoir of information is continued from the last value. If you have invalidated the Maintenance Forecast for a long term, the correct maintenance times cannot be calculated.
Table 10-4 Description of the Setup Screen

<table>
<thead>
<tr>
<th>Item</th>
<th>Explanation</th>
<th>Factory preset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Maintenance Forecast is made effective.</td>
<td>If this is checked, the Maintenance Forecast function takes effect. * If a checkmark is removed, the collection of the information for Maintenance Forecast stops, and the correct maintenance times cannot be calculated.</td>
<td>Check ON</td>
</tr>
<tr>
<td>(2) Collection level of information</td>
<td>Five levels can be specified to collect the information about the maintenance. * As an information collection level gets higher, the accuracy of the maintenance improves, but it affects the tact time more.</td>
<td>1 (Recommended)</td>
</tr>
<tr>
<td>(3) The interval of the forecast</td>
<td>Specify the interval to notify the maintenance time.</td>
<td>6 hours</td>
</tr>
<tr>
<td>How to inform</td>
<td>When the grease replenishment, belt replacement and other maintenance times have reached, they can be notified by generating a warning or outputting a dedicated signal. As for the battery replacement time, one of warnings, C7500, C7510 and C7520, is generated, regardless of whether or not [Warning] under [How to inform] is checked. A warning to be generated varies depending on each situation.</td>
<td></td>
</tr>
<tr>
<td>(4) Warning</td>
<td>If this item is checked, the maintenance time is notified as a warning. The warning numbers are listed as follows: Grease : C753* (* is the axis No.) Belt : C754* (* is the axis No.)</td>
<td>Check ON</td>
</tr>
<tr>
<td>(5) Output Signal</td>
<td>If this item is checked, signal numbers can be entered. If this item is checked and a signal number is entered correctly, the maintenance time is notified using the output of the designated signal.</td>
<td>Check OFF</td>
</tr>
<tr>
<td>(6) Assumption operation time of a day</td>
<td>Enter an estimated robot operation hours per day.</td>
<td>16 hours</td>
</tr>
<tr>
<td>(7) The remainder days until presumed maintenance time</td>
<td>Specify the number of days remaining until presumed maintenance time to be used as a reference to notify the maintenance time.</td>
<td>14 days</td>
</tr>
</tbody>
</table>

Memo

Methods for resetting the alarm and alarm signal output

As a method of notifying the replacement time of each part, an alarm (C753* and C754* (* represents the axis number)), or a dedicated output signal (M*PTEXC (* represents the robot number)) will be output.

If both are set up as the notification methods, executing the error reset operation will reset the alarm and end the signal output.

If the “alarm” method is disabled and only the output of the dedicated output signal is selected as the notification method, pushing the reset button on the front side of the controller will not end the signal output. In this case, push the [ERROR RESET] key on the teaching box or enter the error reset signal (ERRRESET) to end the signal output.

<table>
<thead>
<tr>
<th>Notification method setting</th>
<th>Notification method</th>
<th>Methods to reset the notification (alarm or dedicated signal output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>Output Signal</td>
<td>[RESET] key on the front of the controller</td>
</tr>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>Alarm</td>
</tr>
<tr>
<td>✔️</td>
<td>✔️</td>
<td>Alarm and dedicated signal output</td>
</tr>
<tr>
<td>☐</td>
<td>✔️</td>
<td>Dedicated signal output</td>
</tr>
</tbody>
</table>
10.3.5. Reset screen

The information (about battery, grease and belt) for Maintenance Forecast kept in the controller can be reset.

![Figure 10-17 Reset](image)

<table>
<thead>
<tr>
<th>Types of resets</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the time of battery exchange</td>
<td>It is used when an alarm urging to replace the batteries (C7500, C7510 or C7520) occurs and the batteries have been replaced. Be sure to reset the battery remaining time after a battery has been replaced.</td>
<td>Axes are reset in units of joint axes. Multiple joint axes can be reset at the same time.</td>
</tr>
<tr>
<td>At the time of grease replenishment</td>
<td>When an alarm urging to perform periodic inspections and replenish grease (alarm numbers in the 7530s) occurs, replenish the grease and reset the replenished axis.</td>
<td>Axes are reset in units of joint axes. Multiple joint axes can be reset at the same time.</td>
</tr>
<tr>
<td>At the time of belt exchange</td>
<td>When an alarm urging to perform periodic inspections and to replace the belt when it is damaged (alarm numbers in the 7540s) occurs, replace the belt and reset the axis for which the belt is replaced.</td>
<td>Axes are reset in units of joint axes. Multiple joint axes can be reset at the same time.</td>
</tr>
</tbody>
</table>

These reset operations can be executed using the teaching box. See the following section for further details.
When the [Log] button is clicked in the upper-right corner of the window, the previous reset date/time and reset count can be checked. However, the battery reset count is not displayed. If no reset has not made previously, “----/--- ---:--:--” is displayed.

![Figure 10-18 Log of Resets](image-url)
10.3.6. Resetting maintenance forecast information with teaching box

When an alarm urges to replace the batteries, replenish the grease, or to replace the belt based on the Maintenance Forecast function and these parts are replaced or replenished, the information that has been accumulated within the controller needs to be reset for the axis where such replacement or replenishment has been performed.

The information that has been accumulated within the controller can be reset using not only this software, but also the teaching box.

(1) Resetting the time of battery remaining

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>the time of battery remaining</td>
<td>From the teaching box (R32TB) menu screen, execute "5. Settings and Initialization" → "1. Initialization" → Battery.</td>
</tr>
</tbody>
</table>

It is used when an alarm urging to replace the batteries (C7500, C7510 or C7520) occurs and the batteries have been replaced. Be sure to reset the battery remaining time after a battery has been replaced.

For details on the method for initializing the battery remaining time using the teaching box, in the robot controller's operations manual, see "Details of Functions and Operations".

(2) Resetting the grease and belt information

The grease and belt information can be reset by entering parameters to the controller. The following is the list of parameter names and the values to be entered.

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease information</td>
<td>When an alarm urging to perform periodic inspections and replenish grease (alarm numbers in the 7530s) occurs, replenish the grease and reset the replenished axis.</td>
<td>MFRST</td>
</tr>
<tr>
<td>Belt information</td>
<td>When an alarm urging to perform periodic inspections and to replace the belt when it is damaged (alarm numbers in the 7540s) occurs, replace the belt and reset the axis for which the belt is replaced.</td>
<td>MFBRST</td>
</tr>
</tbody>
</table>

(* These parameters cannot be read not to input all characters in the teaching box.)

The grease or belt information will be reset immediately after a parameter name and the value are entered. (In this case, the controller power does not need to be restarted.) If a value other than 0 is entered, the reset process will be executed for each axis.

Repeat the parameter input operation when resetting information on two or more axes.

Also note that the value read is always 0 regardless of the previously entered value. If you continue the input operation in this state, all axes will be reset. Exercise with caution.

See “Controller INSTRUCTION MANUAL – Detailed explanations of functions and operations” for how to input parameters using the teaching box.
10.3.7. Others

The information for Maintenance Forecast kept in the controller can be backed up and/or restored.

⚠️ **Caution**

The backup and restore operations are performed when the controller (CPU) is replaced.

When the controller (CPU) is replaced, perform both backup and restore operations in a batch using the Backup/Restore tool. Also, be sure to back up the information for Maintenance Forecast before replacement, and restore the backed up information after replacement.

After the controller (CPU) has been replaced, if the information for Maintenance Forecast is not restored, or it is restored after a substantial time has elapsed since the time of backup, please note that the reliability of Maintenance Forecast will be degraded.
10.4. Position repair Function

The position repair function is restricted by the usable models and controller software versions. See "Table 10-9 Supported Robot Controllers and Model".

The "position repair function" is used when a tool is deformed by a collision or the origin is out of place because the motor has been replaced. Just reteaching part of the position data within the robot program makes it possible to use the previous position data in the controller. (Position repair generates parameters to correct the position deviation and corrects all the position data in the robot controller.)

However, please understand that there are some cases that position repair can not restore, such as applications requiring high precision and major mechanical damage to a robot from a collision. Also, restrictions on a robot's degrees of freedom can make it impossible to recover with position repair. Since vertical 5-axis robots and horizontal 4-axis robots are restricted as shown in "Table 10-8 The limit by degree of freedom", positional deviations related to these restrictions cannot be corrected with this function. In this case, either reteach manually or correct the deviating section (for example, by replacing a bent hand).

Table 10-8 The limit by degree of freedom

<table>
<thead>
<tr>
<th>No.</th>
<th>Robot model</th>
<th>The limit by degree of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertical 5-axis robot</td>
<td>It can’t move in the direction of C element of the Cartesian position.</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal 4-axis robot</td>
<td>It can’t move in the direction of A, B element of the Cartesian position.</td>
</tr>
</tbody>
</table>

⚠️ Caution

The position repair function is only supported by MELFA-BASIC IV and MELFA-BASIC V.

The position repair function is only supported by MELFA-BASIC IV and MELFA-BASIC V. It cannot be used with Movemaster commands.

10.4.1. Specifications

The robot models and robot controller version with which the position repair function can be used are as follows.

Table 10-9 Supported Robot Controllers and Models

<table>
<thead>
<tr>
<th>No.</th>
<th>Robot model</th>
<th>CRn-700 series Robot Controller</th>
<th>CRn-500 series Robot Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertical 6-axis robot</td>
<td>The supported models are not restricted by the version</td>
<td>Version J2 or later Only correction of origin data is supported in versions prior to J2.</td>
</tr>
<tr>
<td>2</td>
<td>Vertical 5-axis robot</td>
<td></td>
<td>Version K1 or later Only correction of origin data is supported in versions prior to K1.</td>
</tr>
<tr>
<td>3</td>
<td>Horizontal 4-axis robot (RH-SH series only)</td>
<td></td>
<td>Version K4 or later Any versions prior to K4 are not available. Moreover, This function cannot be used for the RH-AH series robot.</td>
</tr>
</tbody>
</table>
10.4.2. Starting

Use the position repair function while connected to the robot controller. From the project tree, double click the target project [Online] → [Maintenance] → [Position repair].

![Position repair interface]

Figure 10-20 Starting Position Repair
10.4.3. **Flow of operations**

The position repair takes the form of a wizard. You can automatically generate the parameters by proceeding with operations according to the instructions on each screen. You can directly set parameter values.

```
Specify the target robot

Backup the parameters before

Automatic parameter generation (Normal operation)

Specify the program to use for parameter generation (within robot controller)

Back up the selected program

Specify the parameters to be generated

Re-teaching Work Procedure

Move robot to re-teaching position (Use the teaching box)

Execute re-teaching calculation

Parameter generation

Write parameters to robot controller

Restart robot controller power

If setting parameters

Enter parameter values

Write parameters to robot controller

Restart robot controller power

Repeat as necessary
```

The explanation follows the normal operations flow. For the explanation when setting parameter values, see "10.4.16 Revision parameter editing".

Figure 10-21 Operation Flow
10.4.4. Introduction

This is an explanation of the position repair function. Read it carefully, then click the [Next] button.

10.4.5. Communications settings

Check the communication settings and connected to the robot controller, click the [Next] button. For the setting method, see "5 Connecting with the Robot".
10.4.6. Robot selection and parameter backup

Select the robot to execute the re-teaching. The Robot is displayed as follows.

![Robot Selection Window](image)

Controller number: Controller Name + Mechanism Name #Mechanism No.

Displayed only in multi-mechanism mode

To backup parameters, click [Backup]. The dedicated backup screen starts. For more details on backups, see "12 Backup and Restore". Backed up parameter files can be written back to a robot controller using the "backup/restore" functions of this software.

When the preparations are complete, click the [Next] button.

Memo

Parameter Backup

During its operation, this software overwrites parameters to the robot controller. It is recommended that the parameters be backed up at this point to allow the controller to revert to the original parameters.
10.4.7. Revision parameter generation procedure selection

Figure 10-24 Select generation procedure of revision parameter Window

In the next step, the software can either automatically generate parameters or accept manually entered parameter values. Normally, [Generate revision parameter automatically] is selected.

Select [Generate revision parameter automatically] and click [Next] to proceed to “Select Program” window. Select [Edit the value of revision parameter directly] to proceed to “Edit Revision Parameter” window.
10.4.8. Program selection

Select the robot program to use for revision parameter generation, then click the [Next] button. Here, perform the reteaching using the XYZ-coordinate position data in the selected program.

For details on the required position data numbers, see "Table 10-10 Selecting Revision Parameters".

Memo

The points on selecting the program

Select the program with the positions of various location and posture. Moreover, higher accuracy of revision parameters can be obtained by selecting the following type of position data program.

- Program with positions that are easy to re-teach
- Program with positions that require high precision
10.4.9. Program reading and backing up

To backup a program, click [Backup].
The special screen for backup starts. For details on backups, see "12 Backup and Restore".
You can use the backup/restore functions in this software to write a backed up parameter file back into a robot controller.

When the preparations are complete, click the [Next] button.

Memo

Robot Program Backup

During its operation, this software may overwrite robot controller program (position data).
It is recommended that the program be backed up at this point to allow the controller to revert to the original program.
10.4.10. Tool setting check

Parameter values set in the present robot controller for tool data are displayed. The row for the tool selected by the tool number (MEXTLNO) is highlighted in red.

Please check if the tool data and tool number used during teaching is set.

If necessary, change the value from parameter setting in teaching box. Click [Renew List] to update the contents of the display.
(If the CRn-500 series robot controller’s version is older than J2, only the standard tool (MEXTL) will be displayed.)

Click [Next] when ready to proceed.

Caution

Do not change tool data or base data.

After this window, do not change tool data or base data.
If they are changed during re-teaching operation, re-teach calculation cannot be done correctly.
When correcting tool data, if teaching was performed switching back and forth between multiple tools, perform re-teaching operation for each tool.
10.4.11. Revision parameter selection

Select the revision parameter that becomes the target for re-teaching calculation.

Revision parameter will be selected automatically if an item is selected from [Select revision parameter]. Choose [Select all] to select all the revision parameters. If you wish to specify a particular combination of revision parameters, choose [Select arbitrarily] and specify the revision parameters.

<table>
<thead>
<tr>
<th>Vertical 6-axis robot</th>
<th>If the CRn-500 series robot controller’s version is older than J2, only [Error of joint axis] can be selected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical 5-axis robot</td>
<td>If the CRn-500 series robot controller’s version is older than K1, only [Error of joint axis] can be selected.</td>
</tr>
<tr>
<td>Horizontal 4-axis robot (RH-SH series only)</td>
<td>The CRn-500 series robot controller’s any versions prior to K4 are not available. (This function cannot be used for the RH-AH series robot.)</td>
</tr>
</tbody>
</table>

The supported models are not restricted by the version in CRn-700 series robot controller.

Click [Details] to see the description of the difference between checking and not checking [Use the posture elements of position data].

In the following section, details regarding revision parameters and posture elements of position data are explained.

After choosing the revision parameters, click [Next].
10.4.11.1. Revision parameters

Parameters revised by items selected with "Select revision parameters" become as in "Table 10-10 Selecting Revision Parameters".

<table>
<thead>
<tr>
<th>Select revision parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Error of joint axis (About 1-6 points)</td>
</tr>
<tr>
<td>• Tool exchange or modified (3-6 points)</td>
</tr>
<tr>
<td>• Transfer the robot (10 points)</td>
</tr>
<tr>
<td>• Exchange the robot (10-11 points)</td>
</tr>
<tr>
<td>• Select all (13-16 points)</td>
</tr>
<tr>
<td>• Select arbitrarily</td>
</tr>
</tbody>
</table>

Memo

Some elements cannot be calculated according to the robot type and the combination of revision parameters.

In this function, the amount of the gap of the robot is calculated as a correction value, and the revision parameter is generated. However, some elements cannot be calculated (the value becomes 0) as the following two kinds of cases.

* The case which cannot be calculated by the limits of degree of freedom of robot
 Some elements of revision parameter cannot be reflected because the Vertical 5-axis robot and horizontal 4-axis robot have the limitation.

* The case which condensed by the combination of robot mechanism and revision parameter
 Some elements of revision parameter become the value on the same rotation axis according to the combination of robot mechanism and revision parameter. In such case, calculated value of gap is condensed to the one element of revision parameter.
 At this case, though the other element becomes 0, it condenses in other elements and it is corrected. So it is not necessary to reflect it again.
Table 10-10 Selecting Revision Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Description</th>
<th>Revised Parameter</th>
<th>Minimum number of teach points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vertical 6-axis robot</td>
</tr>
<tr>
<td>1</td>
<td>Error of joint axis</td>
<td>Rectifies origin data when joint axis moves or when motor is replaced. Specify the target axes using the check boxes. The number of teaching points is different according to how the axis was specified.</td>
<td>Origin data</td>
<td>1 to 6 points</td>
</tr>
<tr>
<td>2</td>
<td>Tool exchange or modified</td>
<td>Rectifies attachment error when robot tool is exchanged. In addition, rectifies tool data error when the tool is transformed due to interference between robot and peripheral devices. Vertical 5-axis robot: Only Z element of position data is corrected.</td>
<td>Tool data</td>
<td>3 to 6 points</td>
</tr>
<tr>
<td>3</td>
<td>Transfer the robot</td>
<td>Rectifies base data of robot position setup when the robot is transferred to another location. Vertical 5-axis robot: Only X, Y, Z elements of position data are corrected.</td>
<td>Base Data</td>
<td>6 points</td>
</tr>
<tr>
<td>4</td>
<td>Exchange the robot</td>
<td>When robot is exchanged with the tools on, rectifies origin data error and base data of robot position setup. Only for horizontal 4-axis robot, attachment error is also rectified. Vertical 6-axis robot: Origin data J1 is included in base data. Vertical 5-axis robot: As to base data, only X, Y, Z elements are corrected. Horizontal 4-axis robot: Origin data J1 and J3 are included in base data. Origin data J3 and J4 are included in tool data. Select which to be requested because Z elements of tool data and base data are not corrected at the same time.</td>
<td>Base data</td>
<td>10 to 11 points</td>
</tr>
<tr>
<td>5</td>
<td>Select all</td>
<td>Selects all revision parameters. Vertical 6-axis robot: Origin data J1 is included in base data. Vertical 5-axis robot: As to tool data, only Z element is corrected. As to base data, only X, Y, Z elements are corrected. Horizontal 4-axis robot: Origin data J1 and J3 are included in base data. Origin data J3 and J4 are included in tool data. Select which to be requested because Z elements of tool data and base data are not corrected at the same time.</td>
<td>Origin data</td>
<td>13 to 16 points</td>
</tr>
<tr>
<td>No.</td>
<td>Item</td>
<td>Description</td>
<td>Revised Parameter</td>
<td>Minimum number of teach points</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical 6-axis robot</td>
<td>Vertical 5-axis robot</td>
</tr>
<tr>
<td>6</td>
<td>Select Arbitrarily</td>
<td>Specify revision parameters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical 6-axis robot:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Since origin data J1 is included in base data, if base data is selected, turn off the Checkbox of origin data J1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Since origin data J6 is included in tool data, if tool data is selected, turn off the Checkbox of origin data J6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical 5-axis robot:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* As to tool data, only Z element is corrected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* As to base data, only X, Y, Z elements are corrected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal 4-axis robot:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* If base data is selected, turn off the Checkboxes of origin data J1 and J3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* If tool data is selected, turn off the Checkboxes of origin data J3 and J4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin data J1 and J3 are included in base data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin data J3 and J4 are included in tool data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* If tool data and base data are selected together, select which Z element to be requested, because Z elements of tool data and base data are not corrected at the same time.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Revision parameter names correspond to the following.
 Origin data: DJNT
 Tool data: MEXDTL, MEXDTL1 to 4 (Parameter of the tool selected by tool number)
 Base data: MEXDBS
10.4.11.2. Position data posture components

Position data of MELFA-BASIC IV consists of tip position (X, Y, Z) and tip posture elements (A, B, C) (*1). This section describes the cases where [Use the posture elements of position data] is checked and not checked.

Memo

(*1) The posture elements of position data

In case of the vertical 6-axis robot, the posture elements of position data are (A, B, C).
In case of the vertical 5-axis robot, the posture elements of position data are (A, B).
In case of the horizontal 4-axis robot, the posture element of position data is (C).

(1) [Use the posture elements of position data] is checked

Not just the robot tip position (X, Y, Z) but also the tip posture elements are used for position correction calculation.
Precision of generated revision parameter improves if the tip posture elements are also re-taught correctly.
However, if the tip posture elements are not re-taught correctly, as shown in the diagrams below (re-teaching positions P1 and P2), error occurs in position correction calculation, decreasing the precision of the calculation result.

![Diagram](image)

(2) [Use the posture elements of position data] is not checked

Posture elements in the position data taught during re-teaching are not used for position correction calculation.
If it is not necessary to match exactly the tip posture elements during re-teaching, clear the checkbox [Use the posture elements of position data]. In such case, position correction calculation is performed using only the tool tip position data (X, Y, Z), ignoring the error from posture deviation. This increases the precision of location correction.
However, there are some restrictions. For details, see "Table 10-11 About Posture Elements of Re-teaching Position Data".

(*1) The posture elements of position data

In case of the vertical 6-axis robot, the posture elements of position data are (A, B, C).
In case of the vertical 5-axis robot, the posture elements of position data are (A, B).
In case of the horizontal 4-axis robot, the posture element of position data is (C).
<table>
<thead>
<tr>
<th>Condition</th>
<th>Merit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using posture elements of position data</td>
<td>Precision of generated revision parameter improves if the tip position (X, Y, Z) and tip posture elements are re-taught correctly.</td>
<td>During re-teaching, posture must be taught correctly. If posture data is incorrect, precision of revision parameter actually decreases.</td>
</tr>
</tbody>
</table>
| ![Checkmark] | During re-teaching, revision parameters can be generated simply by correctly teaching position (X, Y, Z). (Posture elements need not be accurate.) | In case of the vertical 6-axis robot:
* Posture elements (A, B, C) of tool revision parameters cannot be obtained.
* J6 axis of origin revision parameter cannot be obtained if both X and Y components of the tool parameter are 0.0. |
| ![Checkmark] | In case of the vertical 5-axis robot:
* J6 axis of origin revision parameter cannot be obtained.
| | In case of the horizontal 4-axis robot:
* Posture elements (C) of tool revision parameters cannot be obtained.
* J4 axis of origin revision parameter cannot be obtained if both X and Y components of the tool parameter are 0.0. |
10.4.12. Reteaching work

![Reteach Work Window](image)

Figure 10-29 Reteach Work Window

- **[Remainder]**
 - **Remainder about 1 point(s)**: Displays the number of remaining points until revision parameters are generated.
 - However, at some positions, re-teaching may not decrease the number of remaining points.

- **[Re-teach] button**: Specifies the positions selected in the list and opens "Re-teach the position" screen.

- **[Clear] button**: Clears the re-teaching information for positions selected in the list.

- **[Check of tool data]**: Displays current tool data setting in the robot controller.

Caution

Position data of the targeted program is write-protected.

During showing this window, the position data of the targeted program in the controller is write-protected. If this tool is interrupted when not communicating with the controller, the position data cannot be unprotected. Please release the protect by using the Teaching Box or Program manager of this software.

Position data for the program selected are displayed.
Select the position to re-teach from the list and repeat re-teaching to generate revision parameters.

Re-teaching work procedure can be described as follows. While the “Re-teach the position” screen is open, move the robot to the re-teaching position and click the [Load current position] button on the screen.
Figure 10-30 Re-teach the position Screen

Figure 10-31 Re-teaching Work Procedure

Row for re-taught position will be highlighted in light blue.
Re-teaching does not change the position data values shown in the list.

Caution

Do not perform position correction using the teaching box.

When you move the robot to the re-teaching position using the teaching box, be careful not to correct the position.
During re-teaching, position data of the applicable program in the controller is write-protected.
10-185

! Caution

Do not change tool data, tool number, or base data.

Do not change tool data, tool number, or base data during re-teaching. Re-teaching calculation will not be performed correctly.

When correcting tool data, if teaching was performed switching back and forth between multiple tools, perform re-teaching operation for each tool.

! Caution

Select position data with a different posture element, when re-teaching two or more positions.

Select position data with a different posture element, when re-teaching two or more positions. When position data of the same posture element are selected, there is a possibility that the parameter is not correctly calculated.

! Caution

The cautions when using a robot with the additional axis.

When restoring the position with a robot with a travel axis, reteach at a position where the travel position becomes the same as in the original position travel axis data. (Move the robot so that the travel axis data becomes the same as the original position.) If the retaught position travel axis data differs from the original travel axis data, it is impossible to find the correct revision parameters.

It is possible to change the revision parameters to be generated.

Go back one step to the “Select revision parameter” window to change the setting. Note that if you return one more step to “Check of setting tool” window, all information set by re-teaching work will be cleared.

! Caution

When go back to “Check of setting tool” window, all information set by re-teaching work will be cleared.
10.4.13. Writing parameters

![Figure 10-32 Write Parameters Window](image)

[Print]
Prints the revision parameter information displayed in the list.

[Save position data to file]
Saves position data used in re-teaching as a robot program with positions only. Position data will be values converted by the revision parameters.

Revision parameters and their values generated by re-teaching are displayed. Click [Next] button to write the parameters into the robot controller.

Caution

If revision parameters could not be generated

If revision parameters could not be generated, parameters are not displayed in the list.

If you click the [Next] button, position data used in re-teaching is written into the robot controller. Since parameters are not generated, position data will not be converted.

Parameters may not be generated under the following conditions.
* When one of the specified re-teaching positions is of a significantly low precision
* When one of the original position data is of a significantly low precision
* When the difference between the original position data and the re-teaching position is too large
* When tool data or base data was changed during re-teaching

Clicking the [Back] button and redoing a part of the re-teaching may generate revision parameters. Please delete the re-teaching information for the position data that meets one of the criteria mentioned above and perform re-teaching again.
10.4.14. Controller power supply Off, On

To activate the written parameters, turn off and then turn on the power of the robot controller.
10.4.15. Exit

When the writing of revision parameters is done, operation of this function is complete.

Caution

Perform an operation check before exit this function.

Before exit this window, make sure that all position data works properly. If revision is not correct, click the [Return to re-teach] button to continue re-teaching. (However, if you exited from “Edit revision parameters” window, [Return to re-teach] button will not be shown.)

Caution

Back up the parameters.

This Function has changed the revision parameters. Back up the parameters before exit this window.

Caution

Position data close to operation area boundaries may not be rectifiable.

Around the operation area boundaries, position error may put a point outside the operation area, in which case this function cannot rectify the point.
10.4.16. Revision parameter editing

When you select "Edit the value of revision parameter directly" with "10.4.7 Revision parameter generation procedure selection", this screen is displayed.

Displays values of current revision parameters in the robot controller.
Select parameter from the list and double-click it to display the setting screen. Set the parameter values.
(If the CRn-500 series robot controller’s version is older than J2, only the origin revision parameter (DJNT) is shown.)

Click [Next] to write all parameters into the robot controller and proceed to “Re-start the Power Supply of the Controller” window.
10.5. Servo Monitor

This monitors servo information.

10.5.1. Load

The load state of each robot axis can be monitored. Click [Reset] button to reset the max axis load level of monitored load information.

![Figure 10-36 Servo monitor Load](image)
11. Option Card

You can check information on option cards mounted in the robot controller.

When you open [Option Card] on the project tree, the slots in which option cards are currently mounted and the option card names are displayed. If you place the mouse cursor on an option card name, the information for that option card is displayed.

If no option card is mounted on the robot controller, nothing is displayed.

![Figure 11-1 Option Card Information]
12. Backup and Restore

You can back up information in a robot controller to the computer.
You can also restore backup information saved to the computer back into a robot controller.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup</td>
<td>Saves the backup data on the robot controller to the personal computer.</td>
</tr>
<tr>
<td>Restore</td>
<td>Transfers the backup data saved on the personal computer to the robot controller.</td>
</tr>
</tbody>
</table>

⚠️ Caution

Precautions when executing a backup/restore operation during the replacement of a controller (CPU) that supports Maintenance Forecast

When executing a backup/restore operation during the replacement of a controller (CPU) that supports Maintenance Forecast, also perform the backup/restore operation using the Maintenance Forecast tool.

After a backup operation is performed on a controller that supports Maintenance Forecast, the following message is displayed:

When using a CRn-500 series robot controller, maintenance forecasting is supported for software versions J2 and later.
12.1. Backup (Robot -> PC)

You can save information in a robot controller to a file in the computer. Use the backup function while connected to the robot controller.

(1) From the project tree, open the target project [Backup]. In the backup tree, "All file", "Program information", "Parameter files", and "System program" are displayed.

```
All Files: Saves all files (robot program, parameter files, etc.) in the robot controller into the designated folder.
Program: Saves the robot program file into the designated folder.
Parameter Files: Saves the parameter files into the designated folder.
System Program: Saves the system base program file into the designated folder.
```

(2) Double click the items to backup.

[Parameter List Files]: This is used to edit the parameter information saved by backup in offline mode, and is not required for backup. If this is not checked, the time required to save all files will be shortened.

(3) Specify the backup destination. The default value is the folder that created the workspace/project name/Backup/today's date and time.

You can change the backup destination folder with the [...] button at the right of the displayed backup destination.

You can back up other items at the same time too by putting checkmarks in their checkboxes. In this case, the data is backed up to the backup destination selected above with an identifier for the backup type suffixed to the folder name. The identifiers are as follows.

All...ALL Program information...PRG Parameter information...PRM System program...SYS
The folder name at this time is displayed on the right side of the respective backup items.

![Figure 12-4 Backup (When Multiple Selected)](image)

(4) Specify the back destination, then click the [OK] button.
The confirmation screen is displayed. When you confirm, then click [Yes], the backup is started.

![Figure 12-5 Backup Confirmation Screen](image)

When the backup is completed, the backup data is displayed at [Backup] on the project tree.

![Figure 12-6 Display of Backup Information](image)

Caution

Cautions for backups

The objective of backup data is to back up robot controller information. Note that backed up robot programs can not be edited with the "Program edit" screen.

When backing up system status variable values and program external variable values, switch the robot controller power Off, then On again, then perform the backup operations.

The files BKUP.SYS and MECHA.SYS are automatically created in the specified folder. These files record the saved robot controller mechanical information and save format. Be careful. If you delete or rewrite these files, this may make it impossible to restore them to the robot controller.
12.2. Restore (PC -> Robot)

You can take information back up to the computer and transfer it to a robot controller information. Use the restore function while connected to the robot controller.

(1) From the project tree, open the target project [Backup]. In the backup tree, the information back up for "All file", "Program information", "Parameter files", and "System program", respectively, is displayed.

(2) Select the information listed on the controller, then click the right mouse button. From the right mouse button menu, select [Restore].

- **All Files**: Transfers all files (except BKUP.SYS and MECHA.SYS) in the designated folder to the robot controller after all information in the robot controller is cleared (initialized).
- **Program**: Transfers the robot program file in the designated folder to the robot controller.
- **Parameter Files**: Transfers the parameter file in the designated folder to the robot controller.
- **System Program**: Transfers the system base program file in the designated folder to the robot controller.
- **Change Robot Origin Data**: This is backup information and it only valid when All or Parameter files is selected. Operations for when this checkbox is checked and when it is not are as in "Table 12-1 ".
- **Change Robot Arm Serial Number**: If you check this checkbox, the robot main unit serial number is also rewritten.
Table 12-1 Operations for "Change Robot Arm Serial Number Too"

<table>
<thead>
<tr>
<th>Controller</th>
<th>Check ON</th>
<th>Check OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRn-700 series or
CRn-500 series J2 edition or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRn-700 series or CRn-500 series J2 edition or later

- **Restore files**
 - **<before restore>**
 - Parameters(A)
 - Origin data(A)
 - parameters for position repair (A)
 - **<after restore>**
 - Parameters(A)
 - Origin data(A)
 - parameters for position repair (A)

- **Transfers a backed up file as is. The origin data is replaced.**

CRn-500 series H7 edition or earlier

- **Restore files**
 - **<before restore>**
 - Parameters(B)
 - Origin data(B)
 - parameters for position repair (B)
 - **<after restore>**
 - Parameters(B)
 - Origin data(B)
 - parameters for position repair (B)

- **<before restore>**
 - Revision parameters for position repair will not be written

A backed up file is transferred. However, as for the origin data, the information inside the controller is retained.

Be careful. If communication is cancelled during a series of restore processing, the position revision parameters generated with the "Position repair" function and the origin data may be changed.
Caution

Precaution for Restore

If a batch restoration or a program restoration is executed when the program is being started, the program will automatically be stopped. At this time, if there is an error in the controller, the program in operation cannot be stopped, and the message shown on the right will be displayed. Although a restoration process can be executed even in such a case, the program currently selected or the program that is started by ALWAYS cannot be re-written. If it is possible to remove the cause of the error, reset the error and execute the restoration process again.

12.3. Deleting Backup Data

You can delete the backed up information. Select the information to delete, then click the right mouse button. From the right mouse button menu, select [Delete].

![Image of Backup Data Menu]

It is also possible to delete all the backup data. Right click [Backup] for the target project. From the right mouse button, click "Delete All".

![Image of Backup Data Menu]

Caution

Be aware that once backup data is deleted, you can not restore it.
13. Simulation

This chapter explains the simulation operation methods.

⚠️ Caution

Simulation can not be used with the mini edition.

The simulation function only supports the “RT ToolBox2” standard edition. It can not be used with the mini edition.

Simulation can not be used with Movemaster commands.

Be aware that even with the standard edition, the simulation function can not be used when Movemaster commands are selected.

You can not communicate with the robot controller during a simulation.

You can not communicate with the robot controller during a simulation. To communicate with the robot controller, click on the menu bar [Online] → [Offline] to end the simulation, then again click on the menu bar [Online] → [Online] to connect the robot controller.

With an actual robot, an overload error might occur.

Be aware that even if you run the simulation with the work and hand weight set and this works properly in the simulation, when you actually operate with the robot, an overload may occur and make operation impossible.

If there is an input signal wait in the program, use pseudo-input.

When you execute a program in simulation and there is an input signal wait in the program, the program does not move to the next step until that command is executed. Therefore, if there is an input signal wait, use the pseudo-input function from the signal monitor.
13.1. Starting a Simulation

Click on the menu bar [Option] → [Simulator]. At that time, if there are two or more projects in the workspace, the screen for selecting the screen to conduct the simulation is displayed.

Select the project to start the simulation of, then click the [OK] button.

⚠️ **Caution**

You can only simulate one project.

You cannot simulate multiple projects at the same time.

You can also start a simulation through operations from the tool bar.

Switch to "Offline".

Switch to "Online".

Switch to "Simulation".

When the simulation start-up is complete, the operation screen for the simulation is displayed on the screen. Also, the virtual controller for the simulation is automatically started up as an icon. The simulation is run by this virtual controller. The virtual controller ends automatically when the simulation ends. Do not end the virtual controller manually.
13.2. **Explanation of the Simulation Operation Screen**

This is a simple explanation of the simulation operation screen.

![Simulation Operation Screen Diagram](image)

(1) **Status**
This shows the task slot status for simulation.

(2) **OVRD**
This displays and sets the robot speed override.

(3) **Jump**
You can specify the line in the program to execute.

(4) **Jog operation**
This conducts jog operations for the simulation robot. When you click this button, the jog operation screen is displayed.

(5) **Stop**
When a program is running in a simulation, this stops the program.

(6) **Step execution**
This executes the specified program one line at a time.

(7) **Continuous execution**
You can execute the stopped program again from the line on which it was during with a stop instruction or a breakpoint during program running.

(8) **Servo On/Off**
You can switch the simulation robot servo On/Off.

(9) **Reset**
You can reset the program and any errors that have occurred.

(10) **Direct execution**
You can execute any command without relationship to the robot program.
13.3. Robot View Start

You can display the robot whose simulation you are running and its movements in 3D to check them.

With the simulation running, from the project tree, either double click [Online] → [<Robot model name>] or select [3D Monitor] with the mouse right button menu. The 3D display screen for the set robot is displayed.

Double click the robot type name or select [3D Monitor] with the mouse right button menu.

Figure 13-5 Robot View Start

The robot view perspective can be changed with mouse operation.

<table>
<thead>
<tr>
<th>Viewpoint of changing</th>
<th>Mouse operations on the graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>While clicking the left button, move left/right → Rotation around Z axis Move up/down → Rotation around X axis Move left/right while clicking the left + right buttons → Rotation around Y axis</td>
</tr>
<tr>
<td>Move</td>
<td>Move up/down/left/right while clicking the right button</td>
</tr>
<tr>
<td>Enlargement/reduction</td>
<td>Move up/down/left/right while clicking pressing [Shift] key and clicking the left button</td>
</tr>
</tbody>
</table>
13.4. Robot Program Selection

Select the robot program to run the simulation. Step operation or direct execution in the simulation are not possible unless a program is selected.

In the simulation, from the project tree, with [Online] → [Program], execute "Open in debugging status" for the program from the right mouse button.

If the robot program being simulated is not [Online], use program management to copy to the virtual controller.

The specified robot program is opened in debugging status. The execution line cursor "▶" is displayed at the left end of the command statement edit area. The line on which this execution line cursor is displayed is the line currently being executed.

The display of this execution line cursor can be switched on/off with the menu bar [Debug] → [Display/Do not display].
13.5. Program Execution

You can execute a program that has been opened in debugging status. Start the simulation, then open the robot program in debugging status. When you click the [Continuous Execute] button on the simulation operation screen, automatic operation of the program is started. This automatic operation completes in one cycle. Be careful. If the program repeats infinitely, it does not stop automatically.

Figure 13-7 Program Execution

To forcibly stop a program that is executing, click the [Stop] button on the simulation operation screen.

13.6. Specifying the Starting Line for Program Execution

You can freely specify the line in the program from which to start execution. Use [Jump] on the simulation operation screen. Input the step number to start execution from, then click the button on the right side of the input box. The current execution line moves to the specified step number.

Figure 13-8 Program Execution Line Execution
13.7. Breakpoint Setting

You can also use breakpoints in a simulation. For details on the operation method for breakpoints, see "7.9.4 Setting and deleting breakpoints".

13.8. Step Operation

A program that has been opened in debugging status can be executed step by step. Start the simulation, then open the robot program in debugging status. Step operation in simulation is performed from the simulation operation screen.

![Simulation Operation Screen]

Operate with the [FORWD] button and [BACKWD] button in the [Step Execution] group on the simulation operation screen.

Pressing the [FORWD] button executes the command on the current execution line and advances the current execution line by line. Pressing the [BACKWD] button executes the command on the current execution line and returns the current execution line by line.
13.9. **Direct Execution**

You can input command statements and operate the robot directly. Click the simulation operation screen [Direct execution] button.

![Figure 13-10 Starting Direct Execution](image)

Input the command to execute into the command box, then either press the keyboard [Enter] key or click the [Execute] button. The input command is executed. At this time, if a position variable is specified in a move command or a like, the position variables defined in the currently open program are used. A position variable not defined in the program can not be used.

A command that has been input once into the command box is added to the history and can be selected from the command box dropdown list. However, when the simulation is ended, the history and dropdown list commands are commanded.

![Figure 13-11 Command Dropdown List on Direct Execution Screen](image)

This operation is not possible during automatic running with the [Continuous Execution] button.

Caution

When executing directly, select the program to execute.

Direct execution can not be used unless a program is selected. Always open a program in debugging status and put it in selected status.
13.10. Jog Operation

You can perform the jog operations displayed in the robot view in the simulation status. Click the simulation operation screen [Jog] button. The screen for jog operations is displayed at the bottom of the simulation operation screen.

(1) Robot model select
When multiple robots are set as connected, select the robot model to operate.

(2) Hand align
You can align the posture of a hand installed on the robot in units of 90 degrees. This function moves the value to the multiple of 90° that is closest to the A, B, and C components of the current position.

(3) Move method
Select the robot move method. The robot move methods are "Joint" and "XYZ". The robot current position display and the jog operation button display for each axis use the method selected here. Also, these displays depend on the axis configuration of the connected robot.

Figure 13-13 Screens for Jog Operation with Different Move Methods Selected
(4) Distance setting for moving
 This selects the robot move distance. The robot move distances are "off", "High", and "Low".
 For a detailed explanation of the move distance, see "Detailed Explanation of Functions and Operations" in the robot controller's user's manual.

(5) Robot current position
 This displays the current robot position.

(6) Jog operations on each axis
 This conducts jog operations on each robot axis.
 ![Left Arrow] Moves the selected robot axis in the "-" direction.
 ![Right Arrow] Moves the selected robot axis in the "+" direction.
 These buttons move the robot while the mouse button is held down.

13.11. Simulation Robot Position Variable Editing

 You can edit position variables by moving the simulation robot and reading the position variables from the simulation robot posture.
 Move the robot to the target position with jog operations.
 Click the [Add] button or [Change] button for position variables in a program opened in debugging status to display the position edit screen, then click the [Read current position] button. You can read in the current position of the simulation robot.
13.12. Tact Time Calculation

You can use the simulation function to calculate the tact time for a program prepared.

⚠️ Caution

Tact time calculation

The calculated tact time varies with the capacity of the computer used and its load status and does not completely match the actual robot operating time (tact time).
Use this function as a rough yardstick for tact time study.

Under correct conditions, the results of tact time calculation with this software have an error of about ±3% compared to the actual robot operating time (tact time).

For details on tact time deviation, see "13.12.3 Causes of tact time deviation".
13.12.1. Conditions for tact time measurement

Be aware of the following restrictions on tact time calculation.

⚠️ Caution

Do not use a program that has signal input or robot status changes.

For programs that have signal input from the outside or that have changes in robot status variables or the like, either comment out such sections or extract just the section you want to calculate the tact time for and calculate it. When studying the tact time for such a program, take this into account by adding an approximate input wait time to the calculation results.

Do not use a program with an infinite loop.

The tact time for a program that falls into an infinite loop cannot be correctly calculated. Confirm that the robot program does not fall into an infinite loop with a FOR statement or GOTO statement.

Do not use M_TIMER(1).

Do not use M_TIMER(1). This software's tact time calculation uses M_TIMER(1). If M_TIMER(1) is used during the program, the tact time can not be calculated accurately. Change the program to use any timer from M_TIMER(2) to M_TIMER(8) instead, then calculate the tact time.

If a position array variable or joint array variable is included, also include the corresponding "Dim" declaration in the tact time calculation range.

If a program whose tact time is being measured includes a position array variable or joint array variable also include the corresponding "Dim" declaration in the tact time calculation range.

Include the destinations for any GoTo or GoSub's in the tact time calculation range.

For example, the tact time can not be calculated for a program like the following. The location displayed inverted in black in the program is set for tact time calculation.)

```
  1 xxx
  :   :
 10 Mov P01
  11 Mov P02
  12 Mov P03
  13 GoTo *L10
  14 END
```

No destination selected for GoTo statement

```
  1 Mov P00
  :   :
 10 GoSub *SUB1
  11 End
  12 :
  20 *SUB1
  21 Mov P01
  22 Return
```

No destination selected for sub-routine
13.12.2. Tact time measurement

This explains tact time measurement.

1. **Start simulation.**
 Start simulation. For details, see "13.1 Starting a Simulation".

2. **Open the program.**
 Open the program whose tact time you will calculate. You can calculate the tact time for "offline" and "online" programs. However, you can not calculate the tact time for a program that has been opened in debugging status. Always open the program with "Open program".

 ![Program window]

 For details on the operations for opening a program, see "7.2 Opening an Existing Program".

3. **Specify the range for measuring the program tact time.**
 Drag the section to measure the program tact time for, then drag it to select it.

 ![Tact time measurement range selection]

4. **Click on the menu bar [Tool] -> [Tact time].**
5. **Check the range over which you will calculate the tact time.**

 Open the program whose tact time you will calculate. Check the contents of this range, then click the [OK] button.

![Figure 13-16 Checking the Tact time Measurement Range](image)

The tact time calculation is started. During tact time calculation, "Calculating tact time" is displayed on the simulation operation screen. Do not perform any other operations until this display goes out.

![Figure 13-17 Simulation Operation Screen During Tact time Measurement](image)

6. **The tact time measurement results are displayed.**

 When tact time measurement is complete, the "Take time calculation results" screen is displayed. The tact time measurement results are displayed in ms [milli seconds].

![Figure 13-18 Tact time Measurement Results](image)
13.12.3. Causes of tact time deviation

With this software, you can use the simulation function to calculate the robot movement tact time. However, the calculated tact time varies with the capacity of the computer used and its load status and does not completely match the actual robot operating time (tact time). Use this function as a rough yardstick for tact time study. Also, there are the following causes for the tact time calculation results deviating from actual robot tact time.

(1) An application other than "program editing" of this software is running.

This software’s tact time calculation has parts that are processed on the computer in the background. For example, if you are working running an application such as a Word document that is saved automatically, it takes more time for the background processing for this software and sometimes the correct tact time is not calculated. The tact time is increased.)

When calculating the tact time with this software, first close other applications.

(2) This uses commands that depend on the robot main unit status and external equipment.

There is no connection with the robot main unit or external equipment in this software’s tact time calculation. Therefore, commands that are executed communicating with that equipment are executed as if ideal information were sent from that equipment. Therefore, the calculated cycle time is shorter than the actual cycle time.

The commands to which this applies are shown in the following table.

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Positioning</td>
<td>FINE</td>
<td>Monitors the robot's status until it reaches the target position</td>
</tr>
<tr>
<td>completion wait</td>
<td>CMP JNT/POS/TOOL/OFF CMPG Monitors external force on the robot.</td>
<td></td>
</tr>
<tr>
<td>2 Compliance</td>
<td>COLCHK, COLLVL Monitors external force on the robot.</td>
<td></td>
</tr>
<tr>
<td>3 Collision detection</td>
<td>SERVO ON/OFF Monitors the servo amp status</td>
<td></td>
</tr>
</tbody>
</table>

For example, if the servo On command is executed in the program, the actual robot takes a few seconds, but the simulation requires almost no time at all (500 ms or less). In order calculate the tact time precisely, program using only movement commands and none of the above commands. If you are executing a program you already have, either comment out such commands or extract and use just the part you want to measure.

(3) This uses functions that depend on the CPU processing speed and OS.

The tact time calculation in this software runs on Windows, but the robot controller control software runs on a real-time OS, so the internal operations are different. For example, with a real-time OS, the tact time may be increased by the postponement of calculations with a high load that could not be fully processed, but in this software's tact time calculations, such an increase in the tact time can not be calculated. Therefore, if you use the high-load functions below, the calculated tact time may be a few percent less than the actual tact time.

The commands to which this applies are shown in the following table.

<table>
<thead>
<tr>
<th>Function</th>
<th>Cause of increased processing on actual robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CC-Link</td>
<td>Because there is more signal processing with the CC-Link option than without it</td>
</tr>
<tr>
<td>2 Multi tasking</td>
<td>Because multiple robot programs are executed at the same time</td>
</tr>
<tr>
<td>3 Added axes</td>
<td>Because of the need to control the additional axes</td>
</tr>
<tr>
<td>4 Maximum acceleration/deceleration control</td>
<td>Because the optimum movement for the robot load is calculated</td>
</tr>
<tr>
<td>5 Collision detection</td>
<td>Because processing to detect collisions is executed (*1)</td>
</tr>
<tr>
<td>6 Maintenance forecast</td>
<td>Because the processing time is longer when the maintenance forecasting information collection level is raised (*1) In tact time calculation, the same results are calculated as for information collection level 1 (the factory default setting).</td>
</tr>
</tbody>
</table>

(*1) On actual robots, the tact time is roughly 3-10% longer.

By changing a robot program to eliminate the above factors, you can reduce the difference between the simulation tact time and that on the actual robot. However, because the simulation executes the next movement command without waiting for
static determinacy after movement or for the conditions to be established, the tact time calculated differs from the tact time on the actual robot. We recommend that you finally confirm operation on the actual robot.

13.13. Ending Simulation

To end the simulation, close the robot program in debugging status. Then click on the menu bar [Online] → [Offline] or click on the tool bar "Offline".

![Switch to Offline](image)

Figure 13-19 Toolbar "Switch to Offline"

When the simulation ends, the virtual robot controller, robot view, and simulation operation screen end and the controller goes back offline.
14. MelfaRXM.ocx Communications Middleware Setup

14.1. Summary

MelfaRXM.ocx is an ActiveX controller that communicates with CRn-500 series robot controllers. MELFARXM.ocx can only be used if you have purchased the standard edition of RT ToolBox2. (Customers who have purchased the mini edition can not install MELFARXM.ocx.)

When using only the RT ToolBox2 functions, there is no need to set up "MELFARXM.ocx".

Using MELFARXM.ocx enables you to simply produce Windows applications connected to a CRn-500 series robot controller on the customer's device.

The user's manual for using MelfaRXM.ocx and the cautions are on the RT ToolBox2 standard edition CD-ROM. This MelfaRXM.ocx is for CRn-500 series robot controllers. It can connect with CRn-700 series robot controllers, but the only modes available for communications with robot controllers are RS-232 and Ethernet.

14.2. CD-ROM Contents

The contents of the "RT ToolBox2" (standard edition) CD-ROM are as follows.

For details on MelfaRXM.ocx usage methods, refer to the user's manual on the CD-ROM.

The manual is in the CR-ROM as the Adobe PDF file.

D:/Utility/MELFARXM/Doc/MelfaRXME.pdf
* Example for the CD-ROM drive is "D".

(1) Preparation for viewing
 1) Preparing computer
 Prepare a computer that has a CD-ROM drive.
 2) Preparation of viewing software
 Viewing requires Acrobat Reader Ver 5.0 or higher.
 If neither Acrobat Reader (nor Adobe Reader) is installed, please download it from the
 Adobe Systems web site. (As of December 2007)
 URL: http://www.adobe.com

(2) Viewing methods
 1) Starting From Windows Explorer
 When you start Windows Explorer, then select the file, Acrobat Reader (or Adobe Reader)
 starts and the user's manual is displayed.
 2) Starting directly from Acrobat Reader (or Adobe Reader)
 When you start Windows Explorer Acrobat Reader (or Adobe Reader), then select the file,
 the user's manual is displayed.

14.4. Installation

Perform installation according to the following procedure

(1) Insert the program CD-ROM into the CD-ROM drive of your personal computer. Setup of “RT ToolBox2”
automatically starts. Please click "cancel".

(2) Select [Run] from the [Start] button.

(3) Check the drive name of the CD-ROM drive. Enter the following and click the [OK] button.
 "Drive name":/Utility/MelfaRXM/Setup.exe
 (If the CD-ROM drive is "D", enter "D:/Utility/MelfaRXM/Setup.exe")
(4) Installer starts and the Setup screen appears. Install according to the instructions that appear on the screen. The Product ID is needed when this "MelfaRXM.ocx" is installed. Input the Product ID same as the Product ID of "RT ToolBox2". "MelfaRXM.ocx" can be installed with the Product ID of standard version, but can not be installed with mini version's.

![Input Product ID](image)

Figure 14-4 Input Product ID

The product is installed as in "Table 14-1 Files to be Installed".

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Install destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MelfaRXM.ocx</td>
<td>/Windows/System folder</td>
</tr>
<tr>
<td>2</td>
<td>EZSocketRC.dll (communication DLL)</td>
<td>ex) Windows 2000 :/Winnt/System32
 Windows XP :/Windows/System32</td>
</tr>
<tr>
<td>3</td>
<td>NarcServerApiM.dll (communication DLL)</td>
<td>MelfaRXM.ocx and EzSocketRC.dll are registered in the registry.</td>
</tr>
<tr>
<td>4</td>
<td>RoboCom.exe (communication DLL)</td>
<td>A folder specified during install operation (Normally, C:/ is used.)</td>
</tr>
<tr>
<td>5</td>
<td>Instruction Manual</td>
<td>[MelfaRXM_Dev]
 ReadMe.txttext file which indicated notes
 [RoboCom]............folder of communication server
 [Doc]..............folder of Instruction Manual
 [Sample].............folder of sample programs
 [BCB].............Borland C++ Builder (5.0)
 [VB]............Visual Basic (6.0)
 [VC++]............Visual C++ (6.0)
 [Redist]..............folder of system files Installer (for redistribution)
 [SysFiles].......folder of system files (for redistribution)</td>
</tr>
<tr>
<td>6</td>
<td>Sample programs</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Redistribution files</td>
<td></td>
</tr>
</tbody>
</table>
15. Appendix

15.1. Q&A

This explains frequently asked questions in a Q&A format.

1. Version

(1) Where is the software version information?

It is printed on the surface of your CD-ROM for this software.

You can also check the version information on the screen displayed with this software's menu bar [Help] → [About RT Tool Box2].

(2) Where is the robot controller software version information displayed.

When this software is connected, you can check with the project tree, [Online] properties.

The version information is also displayed on the title screen for the optional teaching box.

2. Product ID

(1) Where can I check the product ID?

This software requires the product ID for installation.

The package containing your software contains a sheet of paper on which is written the product ID.

Also, after this software has been installed, you can also check the product ID on the screen displayed with the menu bar [Help] → [About RT Tool Box2].
(2) I checked "About RT ToolBox2" from the menu, but the product ID is not displayed.

Is "No Product ID!" displayed?
If "No Product ID!" is displayed in the version information, the installation of this software may have failed. Unfortunately, you need to install the software again.

3. Communications (general)

(1) What are the means for communication with the robot controller?

With a CRn-700 series robot controller, you can communicate via USB, Ethernet, and RS-232.
With a CRn-500 series robot controller, you can communicate via Ethernet and RS-232. However, when using Ethernet with a CRn-500 series robot controller, the robot controller must have the optional Ethernet card.
For details, see "5.1 Robots Connected and Types of Communication".

(2) Where are the communications settings made?

They are made on the project edit screen. For details, see "5.2 Connection Settings".
For the robot controller side, change the communications parameters with the optional teaching box. For details, see "Detailed Explanation of Functions and Operations" in the robot controller's user's manual.
[Caution] The communication settings must be made on both this software and the robot controller.
If you change the robot controller settings, you must change the settings in this software too.

(3) I can not communicate with the robot controller.

If you can not communicate with the robot controller, check the following.
Also see "4. Communications (RS-232)", "5. Communications (Ethernet)", and "6. Communications (USB)".

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the connected robot controller selected correctly?</td>
<td>Check if the correct project is selected with this software. For details, see "4.14 Offline/Online/Simulation".</td>
</tr>
<tr>
<td>Is the robot controller power supply On?</td>
<td>Switch On the robot controller's power supply and check that the robot controller starts up normally.</td>
</tr>
<tr>
<td>Is Communications Server 2 running?</td>
<td>If you closed Communications Server 2 by mistake, close this software, then restart it.</td>
</tr>
<tr>
<td>Communications Server 2 is started automatically when this software is started.</td>
<td></td>
</tr>
<tr>
<td>Communications Server 2 is started as an icon.</td>
<td></td>
</tr>
<tr>
<td>Are you connected to a robot controller that is neither the CRn-500 nor CRn-700 series?</td>
<td>Check the robot controller model name in its user's manual (or standard specifications or the like).</td>
</tr>
<tr>
<td>Are the robot controller's network settings correct?</td>
<td>The robot controller's network settings are made with parameters. Check the robot controller's network settings with the optional teaching box.</td>
</tr>
<tr>
<td>Are the communications settings on this software correct?</td>
<td>Set the correct communications settings. For details, see "5.2 Connection Settings".</td>
</tr>
<tr>
<td>Is some other MELFA product running?</td>
<td>Close any MELFA product other than this software. For details, see "1.6 When Starting at the Same Time as Another Product".</td>
</tr>
</tbody>
</table>
Check item or cause

<table>
<thead>
<tr>
<th>What color is Communications Server 2? Return Communications Server 2 to icon status and check the color displays for the line state.</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>The problem may be that the robot controller is not connected correctly. Check the items in "(4) When Communications Server 2 is red (overall)".</td>
</tr>
<tr>
<td>Green</td>
<td>The problem may be that the robot controller and the computer have different communications settings. Check the items in "(5) When Communications Server 2 is green (overall)".</td>
</tr>
<tr>
<td>Yellow</td>
<td>Check the items in "(6) When Communications Server 2 is yellow (overall)".</td>
</tr>
<tr>
<td>Light blue</td>
<td>Check the items in "(7) When Communications Server 2 is light blue (overall)".</td>
</tr>
</tbody>
</table>

(4) When Communications Server 2 is red (overall)

When Communications Server 2 is displayed red, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the communications cable connected correctly?</td>
<td>Connect the cable correctly.</td>
</tr>
<tr>
<td>Are you using the correct communication cable?</td>
<td>Check the communication cable specifications. Be careful. RS-232 cables and Ethernet cables can be either cross cables or straight cables. For the cable specifications, check your robot's "Standard Specifications".</td>
</tr>
<tr>
<td>When connected with CRnQ communications, is the target CPU set correctly?</td>
<td>Set the target CPU correctly. For details, see "5.2.4 CRnQ Communications Settings".</td>
</tr>
</tbody>
</table>

(5) When Communications Server 2 is green (overall)

When Communications Server 2 is displayed green, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do the communications settings in this software and on the robot controller match?</td>
<td>The communications settings in this software and on the robot controller must match. The communications settings for this software are made on the project edit screen. For details, see "5.2 Connection Settings". For the robot controller side, change the communications parameters with the optional teaching box. For details, see "Detailed Explanation of Functions and Operations" in the robot controller's user's manual.</td>
</tr>
</tbody>
</table>

(6) When Communications Server 2 is yellow (overall)

When Communications Server 2 is displayed yellow, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is this software in the "Online" status?</td>
<td>This software started up in the "Offline" status. When you put it into "Online" status, it communicates with the robot controller. For details, see "4.14 Offline/Online/Simulation".</td>
</tr>
</tbody>
</table>
When Communications Server 2 is light blue (overall)

If Communications Server 2 is displayed light blue, but communications are still not possible, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a communications error in this software?</td>
<td>Check the contents of the communications error and close the communications error window.</td>
</tr>
<tr>
<td>Is a simulation underway?</td>
<td>End the simulation.</td>
</tr>
<tr>
<td>(Note) Only the standard edition has the simulation function.</td>
<td></td>
</tr>
<tr>
<td>Is the screen server running on the computer?</td>
<td>End the computer's screen server.</td>
</tr>
<tr>
<td>Is the computer's hard disk is power save mode?</td>
<td>End computer hard disk power save mode setting.</td>
</tr>
</tbody>
</table>

Communications with the robot controller are cut off mid-way through.

If you cannot communicate with the robot controller, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the screen saver set, hard disk power off set, system standby set, or system shut-down set?</td>
<td>If any of these functions are running, they may cause a communications time-out, so do not use any of these functions.</td>
</tr>
<tr>
<td>Is some other product running that uses communications? Or is any permanent resident software running that uses communications?</td>
<td>A computer communications port cannot be opened for two applications, so either close the other application or change the port that this software uses.</td>
</tr>
</tbody>
</table>

4. Communications (RS-232)

If you cannot communicate with the robot controller using RS-232, check the following. Also, see "3. Communications (general)".

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>What color is Communications Server 2? Return Communications Server 2 to icon status and check the color displayed for the line state.</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>The problem may be that the robot controller is not connected correctly. Check the items in "(1) When Communications Server 2 is red (RS-232)".</td>
</tr>
<tr>
<td>Green</td>
<td>The problem may be that the robot controller and the computer have different communications settings. Check the items in "(2) When Communications Server 2 is green (RS-232)".</td>
</tr>
<tr>
<td>Yellow</td>
<td>See "3. Communications (general)".</td>
</tr>
<tr>
<td>Light blue</td>
<td>Check the items in "(3) When Communications Server 2 is light blue (RS-232)".</td>
</tr>
</tbody>
</table>

(1) When Communications Server 2 is red (RS-232)

If Communications Server 2 is displayed red with communications with the robot controller set to RS-232, check the following.
## Check item or cause	Solution
Is Communications Server 2 set for the correct communications port (COM1-COM10)? | The default value for this software is COM1. On some computers, COM1 is not allocated to RS-232, but to an infrared port, modem, or the like. Also, when using RS-232 over USB, the port used for RS-232 may be other than COM1. Use the Windows device manager or the like to check the COM number allocated to RS-232 and change the "Port" setting in the communications settings to that port.

Is some other product running that uses the communication port? Or is any permanent resident software running that uses the communications port? | A computer communications port can not be opened for two applications, so either close the other application or change the port that this software uses.

In the communications settings for this software, is the communications method set to TCP/IP or USB? | Change the communications method to RS-232.

(2) When Communications Server 2 is green (RS-232)

If Communications Server 2 is displayed green with communications with the robot controller set to RS-232, check the following.

Check item or cause	Solution
Do the communications settings in this software and on the robot controller match? In particular, check that the protocol settings match. | The communications settings in this software and on the robot controller must match. The default protocol for this software is "Procedural", but for CRn-500 series robot controllers, the default protocol is "Non-Procedural" |

(3) When Communications Server 2 is light blue (RS-232)

If Communications Server 2 is displayed light blue with communications with the robot controller set to RS-232, check the following.

Check item or cause	Solution

When a computer starts up, sometimes this generates noise. This noise can cause a communications error in the robot controller. | Either start the computer before connecting the cable or start the computer before starting the robot controller. |
5. Communications (Ethernet)

[Note] When using Ethernet with a CRn-500 series robot controller, the robot controller must have the optional Ethernet card.

If you cannot communicate with the robot controller using Ethernet, check the following. Also, see "3. Communications (general)".

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>What color is Communications Server 2? Return Communications Server 2 to icon status and check the color displayed for the line state.</td>
<td>Red: The problem may be that the robot controller is not connected correctly. See the items in "(1) When Communications Server 2 is red (Ethernet)".</td>
</tr>
<tr>
<td></td>
<td>Green: The problem may be that the robot controller and the computer have different communications settings. See the items in "(2) When Communications Server 2 is green (Ethernet)".</td>
</tr>
<tr>
<td></td>
<td>Yellow: See "3. Communications (general)".</td>
</tr>
<tr>
<td></td>
<td>Light blue: See "3. Communications (general)".</td>
</tr>
</tbody>
</table>

Check item or cause

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) When Communications Server 2 is red (Ethernet)</td>
<td>If Communications Server 2 is displayed red with communications with the robot controller set to Ethernet, check the following.</td>
</tr>
<tr>
<td></td>
<td>In the communications settings for this software, is the communications method set to USB or RS-232? Change the communications method to TCP/IP.</td>
</tr>
<tr>
<td>(2) When Communications Server 2 is green (Ethernet)</td>
<td>If Communications Server 2 is displayed green with communications with the robot controller set to Ethernet, check the following.</td>
</tr>
<tr>
<td></td>
<td>Are the robot controller's network settings correct? Make the computer's network settings. Check that the IP address, gateway, subnet mask, and other network settings are correct. Check on the computer [Control Panel] – [Network Settings]. * For details on the network settings, please consult with your network administrator.</td>
</tr>
<tr>
<td></td>
<td>Is the robot controller's IP address set correctly in the communications settings? Correctly set the IP address of the robot controller connected to.</td>
</tr>
</tbody>
</table>
6. Communications (USB)

If you can not communicate with the robot controller using USB, check the following. Also, see "3. Communications (general)".

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>What color is Communications Server 2?</td>
<td>Red</td>
</tr>
<tr>
<td>Return Communications Server 2 to icon status and check the color displayed for the line state.</td>
<td>The problem may be that the robot controller is not connected correctly. Check the items in "(1) When Communications Server 2 is red (RS-232)".</td>
</tr>
<tr>
<td>Green</td>
<td>The problem may be that the robot controller and the computer have different communications settings. See "3. Communications (general)".</td>
</tr>
<tr>
<td>Yellow</td>
<td>See "3. Communications (general)".</td>
</tr>
<tr>
<td>Light blue</td>
<td>Check the items in "(2) When Communications Server 2 is light blue (USB)".</td>
</tr>
</tbody>
</table>

(1) When Communications Server 2 is red (USB)

If Communications Server 2 is displayed red with communications with the robot controller set to USB, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the communications settings for this software, is the communications method set to TCP/IP or RS-232?</td>
<td>Change the communications method to USB.</td>
</tr>
<tr>
<td>Is the USB driver installed?</td>
<td>Communicating with USB requires that the USB driver be installed. For details, see "1.5.3 USB driver (CRnD-700 series robot controller) installation", "1.5.4 CRnQ communications USB driver installation" and "1.5.5 CRnQ Communications USB driver for GOT transparent installation".</td>
</tr>
</tbody>
</table>

(2) When Communications Server 2 is light blue (USB)

With communications with the robot set to USB, if Communications Server 2 is displayed light blue, but communications are still not possible, check the following.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the robot controller power supply Off?</td>
<td>When connected on USB with CRnQ communications, if the robot controller power goes Off after a normal connection was established, the display remains light blue. Switch Offline with this software, switch the robot controller power On, then go back online.</td>
</tr>
<tr>
<td>Is the communications cable connected correctly?</td>
<td>When connected on USB with CRnQ communications, if the communications cable is disconnected after a normal connection was established, the display remains light blue. Switch Offline with this software, connect the communications cable, then go back online.</td>
</tr>
</tbody>
</table>

7. Robot program

(1) Did you write the program with Movemaster commands?
The robots that can use Movemaster commands are restricted. Check in your robot’s standard specifications to see whether it supports Movemaster commands. If your robot supports Movemaster commands, change the language used with "6 Robot Program Language Setting" in this document.

(2) Is it possible to use programs as is that we used with an E/EN series robot controller?

Position data prepared with MELFA-BASIC III (for E/EN series) can not be used as is. Convert the position data with the "Program conversion" function. For details, see "7.11 Program Conversion". Also, some commands have changed. For details, see "Detailed Explanation of Functions and Operations" in the robot controller's user's manual.

(3) Is it possible to use R-250R series and R-300R series programs?

R-250R series and R-300R series robot programs written in the MELFA II language can not be used as is. Write new programs.

8. Program edit

(1) When we check syntax, "Error in input command statement syntax" occurs frequently.

<table>
<thead>
<tr>
<th>Check item or cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the command statement syntax correct?</td>
<td>Program in correct syntax.</td>
</tr>
<tr>
<td>Are double-byte spaces used?</td>
<td>Use only single-byte spaces.</td>
</tr>
<tr>
<td>Is the language to use set correctly?</td>
<td>Set the robot program language you are using.</td>
</tr>
<tr>
<td>This software supports MELFA-BASIC IV, MELFA-BASIC V, and Movemaster commands, but there are terms that must be switched and set for whichever one of these you use.</td>
<td>For details, see "6 Robot Program Language Setting".</td>
</tr>
<tr>
<td>Does the version of this software support your robot controller? For some robot functions, new commands are added.</td>
<td>Please purchase a version that supports your robot controller. (Please contact the store you purchased from or one of our branches.) * A program can be written to the robot controller even if the syntax check finds many "syntax errors".</td>
</tr>
</tbody>
</table>

(2) How should we change the robot program language setting?

They are made on the project edit screen. For details, see "6 Robot Program Language Setting". The robot program language set here is enabled when you edit a program offline. Online programs are displayed in the robot program language set with the connected robot controller.

(3) When you open a program, the robot program language is different from the one set for this project.

Is there any online program open?

Online programs are displayed in the robot program language set with the connected robot controller. The robot program language set with the project is enabled when you edit a program offline.

(4) Is it possible to edit or copy a program that is running?

You can neither edit nor copy a program that is running. Stop the program, then edit or copy it.

(5) How should we edit a program for which the start condition is "Always"?

A program for which the start condition is "Always" is executed immediately after the robot controller power comes On. To edit such a program, use the following procedure.

① Change the starting condition in the "Slot table (SLT * * 1-32)" parameter to "Start (normal)". (Write this parameter to the robot controller.)
② Reset the power supply for the robot controller.
③ Edit the target program and save it to the robot controller.
④ Return the starting condition in the "Slot table (SLT * * 1-32)" parameter to "Always". (Write this parameter to the robot controller.)
⑤ Reset the power supply for the robot controller.

(6) Is it possible to change the font for a robot program displayed with the program edit tool?
Yes.
Change the font used with "7.5.4 Changing the font" in this document.

(7) We are not using joint position variables (J variables), so is it possible to make the display area smaller?
Yes.
Change the display proportions with "7.5.1 Changing the display area" in this document.

(8) Is it possible to edit a backed up program (*.MB4 file) with program editing?
It is not possible to open a backed up program (*.MB4 file) with program editing.
Restore the backed up program to a robot controller, then open it with program editing or store it on the computer with program management.

(9) "Use defined external variable can not be used (481000000)" is displayed and the program can not be edited.
This error is displayed if a user defined external variable is used even though the user base program is not defined. (Normally, a user base program is defined with the "PRGUSR" parameter, but if nothing is set in the "PRGUSR" parameter, this error occurs.)
To use a user defined external variable, define the user base program.
Also, for details on user base programs, see "Detailed Explanation of Functions and Operations" in the robot controller's user's manual.

(10) Is it possible to copy position data to another program?
Yes.
For details, see "7.6.4.4 Copy position data" and "7.6.4.5 Pasting position data" in this document.

(11) Does it cause an error to not discriminate uppercase and lowercase letters when inputting commands?
No.
You can input either uppercase letters or lowercase letters with the program editor, but when the program is saved to a robot controller, the commands are converted correctly.

9. Variable monitor

(1) How are external variables (system status variables, program external variables, and user defined external variables) monitored?
Use the program monitor.
For details, see "9.1.2 Program monitoring" in this document.
10. Option card

(1) How should one check what option cards are mounted in a robot controller?
Check from the project tree.
For details, see "11 Option Card" in this document.

11. Parameter editing

(1) No parameter list is displayed in the parameter editing tool.
Download the parameter list from the robot controller.
For details, see "8.1.3 Parameter list reading".

(2) We changed a parameter, but the new value does not take effect.
After you changed the parameter, did you switch the power for the robot controller Off, then On again?
The new parameter value does not take effect until you switch the robot controller power Off, then On again.
Switch the robot controller power Off, then On again.

12. Backup/restore

(1) Is it possible to edit a backed up program (*.MB4 file) with program editing?
It is not possible to open a backed up program (*.MB4 file) with program editing.
Restore the backed up program to a robot controller, then open it with program editing or store it on the computer with program management.

13. Other

(1) Characters are displayed on the screen on top of each other or with some characters missing.
Is the font size in the computer screen settings something other than "Standard"?
Use this software with the font size set to "Standard". For Windows XP, to make the screen settings, click [Control Panel] → [Display]. Now from the "Display Properties" window "Appearance" tab, set the font size with [Font Size].
15.2. Index

A
ABS Origin Technique .. 10-159
Additional Axis Parameters 8-126
Assigning Dedicated Input/Output Signals 8-117
Data parameters ... 8-119
General 1 Parameters 8-117
General 2 Parameters 8-117
Hand parameters ... 8-120
Jog parameters .. 8-119
Machine lock (each robot) parameters 8-122
Servo On/Off (each robot) parameter 8-122
Slot start (each slots) parameters 8-121
Slot stop (each slots) parameters 8-121
Warm-up operation parameters 8-120

B
Backup .. 12-197
Breakpoint ... 7-95, 13-208

C
Collision Detection Parameters 8-127
Command template ... 7-84
Communications middleware 1-15, 14-218
Communications Server 2 2-38
custom cable ... 1-16
Connecting with the Robot 5-52
Connection Settings ... 5-53
 CRnQ Communications Settings 5-57
 RS-232 Communication Settings 5-56
 TCP/IP (Ethernet) Communication Settings 5-54
USB Communication Settings 5-54
Copy
 Copy position data 7-79
 Edit assist functions 7-79
 Copy position data 7-79
Cut .. 7-79

D
Debugging
 Breakpoint .. 7-95
 Ending debugging ... 7-96
 Starting debugging 7-92
Direct Execution .. 13-209
Display area .. 7-72
Dropdown menu ... 2-35

E
Error history ... 9-142
Error monitoring ... 9-141
Escape Point Parameters 8-124
Ethernet Settings .. 8-132

F
Find
 Parameters .. 8-109
 Program Editing .. 7-80
Find in Files .. 7-81
Font .. 7-74

G
Forced output
 General signal ... 9-146
 Register (CC-Link) 9-153
Free Plane Limit Parameters 8-124
General signal monitoring 9-144
Forced output .. 9-146
Pseudo-input ... 9-145

H
Hand Parameters .. 8-112

I
Initialization .. 10-161
Deletion of all robot programs 10-162
Initializing the battery remaining time 10-162
Serial number ... 10-162
Setting the time in the robot controller 10-161
Install ... 1-19

J
Jog Operation .. 13-210
Jog Parameters ... 8-111
Joint position data editing 7-84
Jump to specified line 7-82

M
Maintenance ... 10-155
Maintenance Forecasting 10-164
Mechanical stopper technique 10-158
MelfaRXM.ocx .. 1-15, 14-218
Menu Bar ... 2-35
Monitoring ... 9-135
 Errors .. 9-141
 General signal ... 9-144
 Movement status 9-140
 Named signals ... 9-147
 Operation hours 9-154
 Production information 9-154
 Programs ... 9-137
 Register (CC-Link) 9-150
 Robot status .. 9-143
 Servo Monitor .. 10-194
 Slot operation status 9-136
 Stop signal ... 9-149
Movement Parameters 8-129
Multiple CPU Settings 8-133

N
Named signals .. 9-147

O
Offline ... 4-50
Online ... 4-50
Operating Range Parameters 8-111
Operation hour monitoring 9-154
Option Card ... 11-195
Program monitoring ... 9-137
Pseudo-input
Protect settings .. 7-100
Property window .. 2-36
Program
Production information monitoring 9-154
Register (CC-Link) monitoring 9-150
Renumbering ... 7-85
Paste ... 7-79
Partial writing .. 7-83
Position repair Function 10-172
Production information monitoring 9-154
Program
Comparison ... 7-100
Copy .. 7-98
Debugging ... 7-92
Delete ... 7-99
Edit assist functions .. 7-79
Move ... 7-99
Opening an Existing Program 7-67
Printing ... 7-91
Read Items ... 7-68
Rename .. 7-99
Robot Program Language 6-64, 8-125
Saving Programs .. 7-86
Writing a New Program 7-65
Writing Programs .. 7-65
Program Conversion ... 7-101
Program Editing
Changing the display area 7-72
Character colors .. 7-73
Command format hints .. 7-73
Font .. 7-74
MELFA-BASIC IV.. 7-76
MELFA-BASIC V.. 7-75
Menu Bar .. 7-70
Movemaster command 7-76
Program Management ... 7-97
Program monitoring .. 9-137
Program Parameters ... 8-130
Project ... 4-41
Adding a Project .. 4-47
Changing a Project Name 4-47
Copying Programs Between Projects 4-49
Deleting a Project .. 4-48
Project tree .. 2-36, 4-49
Property window .. 2-36
Protect settings .. 7-100
Pseudo-input
General signal ... 9-145
Register (CC-Link) .. 9-152
Read Items .. 7-68
Register (CC-Link) monitoring 9-150
Forced output ... 9-153
Pseudo-input ... 9-152
Renumbering ... 7-85
Replace .. 7-82
Restore .. 12-199
Robot Program Language
Parameter Setting .. 8-125
Setting ... 6-64
Robot status monitoring 9-143
Robot view ... 8-143, 13-205
RS-232 cable .. 1-16
RS-232 Setup Parameters 8-123
Servo Monitor ... 10-194
Load ... 10-194
Simulation ... 4-50, 13-202
Breakpoint .. 13-208
Direct Execution .. 13-209
Ending Simulation .. 13-217
Jog Operation ... 13-210
Robot view ... 13-205
Starting a Simulation .. 13-203
Step Operation ... 13-208
Tact Time Calculation .. 13-212
Slot operation status monitoring 9-136
Slot Tables ... 8-115
Sorting .. 7-85
Start .. 1-32, 2-33
Status bar .. 2-37
Step Operation ... 13-208
Stop signal ... 9-149
Syntax check .. 7-83, 7-90
Tact Time Calculation .. 13-212
Title Bar ... 2-34
Tool bar ... 2-35
Tool Parameters .. 8-114
Tool technique .. 10-158
Uninstall .. 1-22
USB Driver ... 1-23, 1-25, 1-30
User Error Parameters .. 8-131
User Origin Technique .. 10-159
Warm-Up Operation Parameters 8-128
Weight and Size Parameters 8-113
Workspace ... 4-41
Changing a Workspace Name 4-46
Changing a Workspace Title 4-46
Closing a Workspace .. 4-44
Creating a New Workspace 4-43
Deleting a Workspace .. 4-45
Opening an Existing Workspace 4-44
Saving a Workspace .. 4-45
Write items ... 7-89
XYZ position data batch editing 7-84
Zone Parameters .. 8-123